Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Swarm 10-Year Anniversary
|
|
---|---|---|
Article Number | 29 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2025015 | |
Published online | 22 July 2025 |
- Akasofu S-I. 1983. Evolution of ideas in solar-terrestrial physics. Geophys J Int 74(1): 257–299. https://doi.org/10.1111/j.1365-246X.1983.tb01880.x. [Google Scholar]
- Alexeev II. 2005. What defines the polar cap and auroral oval diameters? In: The inner magnetosphere: physics and modeling, Pulkkinen TI, Tsyganenko NA, Friedel RHW (Eds), American Geophysical Union, pp. 257–262. ISBN 9781118666098. https://doi.org/10.1029/155GM27. [Google Scholar]
- Alken P, Thébault E, Beggan CD, Amit H, Aubert J, et al. 2021. International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73(1): 49. https://doi.org/10.1186/s40623-020-01288-x. [NASA ADS] [CrossRef] [Google Scholar]
- Backus G, George B, Parker RL, Parker R, Constable C. 1996. Foundations of geomagnetism. Cambridge University Press. ISBN 9780521410069. [Google Scholar]
- Baker KB, Wing S 1989. A new magnetic coordinate system for conjugate studies at high latitudes. J Geophys Res Space Phys 94(A7): 9139–9143. https://doi.org/10.1029/JA094iA07p09139. [Google Scholar]
- Bevis M, Cambareri G. 1987. Computing the area of a spherical polygon of arbitrary shape. Math Geol 19(4): 335–346. https://doi.org/10.1007/BF00897843. [Google Scholar]
- Blake SP, Pulkkinen A, Schuck PW, Glocer A, Tóth G. 2021. Estimating maximum extent of auroral equatorward boundary using historical and simulated surface magnetic field data. J Geophys Res Space Phys 126(2): e2020JA028284. https://doi.org/10.1029/2020JA028284. [Google Scholar]
- Brock JE. 1975. The inertia tensor for a spherical triangle. J Appl Mech 42(1): 239–239. https://doi.org/10.1115/1.3423535. [Google Scholar]
- Cnossen I, Richmond AD, Wiltberger M. 2012. The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth’s magnetic dipole moment. J Geophys Res Space Phys 117(A5): A05302. https://doi.org/10.1029/2012JA017555. [Google Scholar]
- Constable C, Constable S. 2023. A grand spectrum of the geomagnetic field. Phys Earth Planet Inter 344: 107090. https://doi.org/10.1016/j.pepi.2023.107090. [Google Scholar]
- Constable CG, Parker RL, Stark PB. 1993. Geomagnetic field models incorporating frozen-flux constraints. Geophys J Int 113(2): 419–433. https://doi.org/10.1111/j.1365-246X.1993.tb00897.x. [Google Scholar]
- Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6: 47–48. https://doi.org/10.1103/PhysRevLett.6.47. [CrossRef] [Google Scholar]
- Feldstein Y. 2016. The discovery and the first studies of the auroral oval: a review. Geomagn Aeron 56(2): 129–142. https://doi.org/10.1134/S0016793216020043. [Google Scholar]
- Feldstein Y, Starkov G. 1970. The auroral oval and the boundary of closed field lines of geomagnetic field. Planet Space Sci 18(4): 501–508. https://doi.org/10.1016/0032-0633(70)90127-3. [Google Scholar]
- Feldstein YI. 1986. A quarter of a century with the auroral oval. Eos Trans Am Geophys Union 67(40): 761–767. https://doi.org/10.1029/EO067i040p00761-02. [Google Scholar]
- Finlay CC, Kloss C, Olsen N, Hammer MD, Tøffner-Clausen L, Grayver A, Kuvshinov A. 2020. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space 72(1): 1–31. https://doi.org/10.1186/s40623-020-01252-9. [NASA ADS] [CrossRef] [Google Scholar]
- Giaquinta M, Hildebrandt S. 2004. Calculus of Variations I. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, ISBN 9783540506256. [Google Scholar]
- Glassmeier K-H, Vogt J, Stadelmann A, Buchert S. 2004. Concerning long-term geomagnetic variations and space climatology. Ann Geophys 22(10): 3669–3677. https://doi.org/10.5194/angeo-22-3669-2004. [Google Scholar]
- Gubbins D, Jones AL, Finlay CC. 2006. Fall in Earth’s magnetic field is erratic. Science 312(5775): 900–902. https://doi.org/10.1126/science.1124855. [Google Scholar]
- Gubbins D, Roberts N. 1983. Use of the frozen flux approximation in the interpretation of archaeomagnetic and palaeomagnetic data. Geophys J Int 73(3): 675–687. https://doi.org/10.1111/j.1365-246X.1983.tb03339.x. [Google Scholar]
- Hammer MD, Finlay CC. 2018. Local averages of the core-mantle boundary magnetic field from satellite observations. Geophys J Int 216(3): 1901–1918. https://doi.org/10.1093/gji/ggy515. [Google Scholar]
- Hayakawa H, Tamazawa H, Ebihara Y, Miyahara H, Kawamura AD, Aoyama T, Isobe H. 2017. Records of sunspots and aurora candidates in the Chinese official histories of the Yuán and Máng dynasties during 1261–1644. Publ Astron Soc Jpn 69(4): 65. https://doi.org/10.1093/pasj/psx045. [Google Scholar]
- He F, Wei Y, Wan W. 2020. Equatorial aurora: the aurora-like airglow in the negative magnetic anomaly. Natl Sci Rev 7(10): 1606–1615. https://doi.org/10.1093/nsr/nwaa083. [Google Scholar]
- Hill TW, Rassbach ME. 1975. Interplanetary magnetic field direction and the configuration of the day side magnetosphere. J Geophys Res 80(1): 1–6. https://doi.org/10.1029/JA080i001p00001. [Google Scholar]
- Hope ER. 1957. Linear secular oscillation of the northern magnetic pole. J Geophys Res 62(1): 19–27. https://doi.org/10.1029/JZ062i001p00019. [Google Scholar]
- Jackson A, Finlay C. 2015. Geomagnetic secular variation and its applications to the core. In: Treatise on geophysics, 2nd edn, Schubert G (Ed.), Elsevier, Oxford, pp. 137–184. ISBN 978-0-444-53803-1. https://doi.org/10.1016/B978-0-444-53802-4.00099-3. [Google Scholar]
- Johnson CL, Constable CG. 1997. The time-averaged geomagnetic field: global and regional biases for 0–5 Ma. Geophys J Int 131(3): 643–666. https://doi.org/10.1111/j.1365-246X.1997.tb06604.x. [Google Scholar]
- Kataoka R, Nakano S. 2021. Auroral zone over the last 3000 years. J Space Weather Space Clim 11: 46. https://doi.org/10.1051/swsc/2021030. [Google Scholar]
- Korte M, Mandea M. 2008. Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planets Space 60(9): 937–948. https://doi.org/10.1186/BF03352849. [Google Scholar]
- Korte M, Stolze S. 2016. Variations in mid-latitude auroral activity during the holocene. Archaeometry 58(1): 159–176. https://doi.org/10.1111/arcm.12152. [Google Scholar]
- Kubo Y, Saito S, Tsugawa T, Ebihara Y, Nagatsuma T, Sato T, Jin H. 2023. Impact of space weather on various fields. In: Solar-terrestrial environmental prediction, Kusano K (Ed.), Springer Nature Singapore, Singapore, pp. 9–79. ISBN 978-981-19-7765-7. https://doi.org/10.1007/978-981-19-7765-7_2. [Google Scholar]
- Laundal KM, Richmond AD. 2017. Magnetic coordinate systems. Space Sci Rev 206(1–4): 27–59. https://doi.org/10.1007/s11214-016-0275-y. [Google Scholar]
- Lesur V, Gillet N, Hammer M, Mandea M. 2022. Rapid variations of Earth’s core magnetic field. Surv Geophys 43(1): 41–69. https://doi.org/10.1007/s10712-021-09662-4. [Google Scholar]
- Livermore PW, Finlay CC, Bayliff M. 2020. Recent north magnetic pole acceleration towards Siberia caused by flux lobe elongation. Nat Geosci 13(5): 387–391. https://doi.org/10.1038/s41561-020-0570-9. [Google Scholar]
- Longden N, Chisham G, Freeman MP, Abel GA, Sotirelis T. 2010. Estimating the location of the open-closed magnetic field line boundary from auroral images. Ann Geophys 28(9): 1659–1678. https://doi.org/10.5194/angeo-28-1659-2010. [Google Scholar]
- Maffei S, Eggington JW, Livermore PW, Mound JE, Sanchez S, Eastwood JP, Freeman MP. 2023. Climatological predictions of the auroral zone locations driven by moderate and severe space weather events. Sci Rep 13(1): 779. https://doi.org/10.1038/s41598-022-25704-2. [Google Scholar]
- Mandea M, Dormy E. 2003. Asymmetric behavior of magnetic dip poles. Earth Planets Space 55(3): 153–157. https://doi.org/10.1186/BF03351742. [Google Scholar]
- Milan SE. 2009. Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys Res Lett 36(18): L18101. https://doi.org/10.1029/2009GL039997. [Google Scholar]
- Noeldeke C, Boettcher M, Mohr U, Gaisser S, Alvarez Rua M, Eickhoff J, Leslie M, Von Thun M, Klinkner S, Varatharajoo R. 2021. Single event upset investigations on the “Flying Laptop” satellite mission. Adv Space Res 67(6): 2000–2009. https://doi.org/10.1016/j.asr.2020.12.032. [Google Scholar]
- Oguti T. 1993a. The auroral zone in historic times–the Northern UK was in the auroral zone 300 years ago. J Geomag Geoelectr 45(3): 231–242. https://doi.org/10.5636/jgg.45.231. [Google Scholar]
- Oguti T. 1993b. A note on the auroral frequency charts by Ritz and Vestine. J Geomag Geoelectr 45(5): 449–454. https://doi.org/10.5636/jgg.45.449. [Google Scholar]
- Oguti T. 1993c. Prediction of the location and form of the auroral zone: wandering of the auroral zone out of high latitudes. J Geophys Res Space Phys 98(7): 11649–11655. https://doi.org/10.1029/93JA00328. [Google Scholar]
- Olsen N, Mandea M. 2007. Will the magnetic North Pole move to Siberia? Eos Trans Am Geophys Union 88(29): 293–293. https://doi.org/10.1029/2007EO290001. [Google Scholar]
- Olver F, Lozier D, Boisvert R, Clark C. 2010. The NIST handbook of mathematical functions. Cambridge University Press, New York, NY. [Google Scholar]
- Richmond A. 1995. Ionospheric electrodynamics using magnetic apex coordinates. J Geomag Geoelectr 47(2): 191–212. https://doi.org/10.5636/jgg.47.191. [Google Scholar]
- Shepherd SG. 2014. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. J Geophys Res Space Phys 119(9): 7501–7521. https://doi.org/10.1002/2014JA020264. [Google Scholar]
- Silverman SM. 1992. Secular variation of the aurora for the past 500 years. Rev Geophys 30(4): 333–351. https://doi.org/10.1029/92RG01571. [Google Scholar]
- Silverman SM, Hayakawa H. 2021. The Dalton minimum and John Dalton’s auroral observations. J Space Weather Space Clim 11: 17. https://doi.org/10.1051/swsc/2020082. [Google Scholar]
- Siscoe GL, Chen CK. 1975. The paleomagnetosphere. J Geophys Res 80(34): 4675–4680. https://doi.org/10.1029/JA080i034p04675. [Google Scholar]
- Terra-Nova F, Amit H, Choblet G. 2019. Preferred locations of weak surface field in numerical dynamos with heterogeneous core-mantle boundary heat flux: consequences for the South Atlantic Anomaly. Geophys J Int 217(2): 1179–1199. https://doi.org/10.1093/gji/ggy519. [Google Scholar]
- Thomson AWP, Dawson EB, Reay SJ. 2011. Quantifying extreme behavior in geomagnetic activity. Space Weather 9(10): S10001. https://doi.org/10.1029/2011SW000696. [Google Scholar]
- Tsyganenko NA. 2019. Secular drift of the auroral ovals: how fast do they actually move? Geophys Res Lett 46(6): 3017–3023. https://doi.org/10.1029/2019GL082159. [Google Scholar]
- Tsyganenko NA, Andreeva VA. 2015. A forecasting model of the magnetosphere driven by an optimal solar wind coupling function. J Geophys Res Space Phys 120(10): 8401–8425. https://doi.org/10.1002/2015JA021641. [Google Scholar]
- Van Zandt TE, Clark WL, Warnock JM. 1972. Magnetic apex coordinates: a magnetic coordinate system for the ionospheric F 2 layer. J Geophys Res 77(13): 2406–2411. https://doi.org/10.1029/JA077i013p02406. [Google Scholar]
- Vogt J, Glassmeier K-H. 2001. Modelling the paleomagnetosphere: strategy and first results. Adv Space Res 28(6): 863–868. https://doi.org/10.1016/S0273-1177(01)00504-X. [Google Scholar]
- Wagner D, Neuhäuser R. 2019. Variation of the auroral oval size and offset for different magnetic activity levels described by the Kp-index. Astron Nachr 340(6): 483–493. https://doi.org/10.1002/asna.201913601. [CrossRef] [Google Scholar]
- Xiong C, Lühr H. 2014. An empirical model of the auroral oval derived from CHAMP field-aligned current signatures – Part 2. Ann Geophys 32(6): 623–631. https://doi.org/10.5194/angeo-32-623-2014. [CrossRef] [Google Scholar]
- Yokoyama N, Kamide Y, Miyaoka H. 1998. The size of the auroral belt during magnetic storms. Ann Geophys 16(5): 566–573. https://doi.org/10.1007/s00585-998-0566-z. [Google Scholar]
- Zossi B, Amit H, Fagre M, Elias AG. 2021. Observed auroral ovals secular variation inferred from auroral boundary data. Geosciences 11(8): 351. https://doi.org/10.3390/geosciences11080351. [Google Scholar]
- Zossi B, Fagre M, Amit H, Elias AG. 2018. Polar caps during geomagnetic polarity reversals. Geophys J Int 216(2): 1334–1343. https://doi.org/10.1093/gji/ggy494. [Google Scholar]
- Zossi B, Fagre M, Amit H, Elias H. 2020. Geomagnetic field model indicates shrinking northern auroral oval. J Geophys Res Space Phys 125(8): e2019JA027434. https://doi.org/10.1029/2019JA027434. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.