Open Access
| Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
|---|---|---|
| Article Number | 44 | |
| Number of page(s) | 17 | |
| DOI | https://doi.org/10.1051/swsc/2025039 | |
| Published online | 24 October 2025 | |
- Abdu, MA. 1997. Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J Atmos Sol-Terr Phys 59 (13): 1505–1519. https://doi.org/10.1016/s1364-6826(96)00152-6. [Google Scholar]
- Arbesser-Rastburg, B, Jakowski N. 2007. Effects on satellite navigation. Space Weather Physics and Effects (1st edn.). Springer Berlin Heidelberg. ISBN 9783540239079. https://doi.org/10.1007/978-3-540-34578-7_13. [Google Scholar]
- Balan, N, Liu L, Le H. 2018a. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet Phys 2 (4): 1–19. https://doi.org/10.26464/epp2018025. [Google Scholar]
- Balan, N, Souza J, Bailey GJ. 2018b. Recent developments in the understanding of equatorial ionization anomaly: A review. J Atmos Sol-Terr Phys 171: 3–11. https://doi.org/10.1016/j.jastp.2017.06.020. [Google Scholar]
- Berdermann, J, Kriegel M, Banyś D, Heymann F, Hoque MM, Wilken V, Borries C, Heßelbarth A, Jakowski N. 2018. Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather 16 (10): 1604–1615. https://doi.org/10.1029/2018sw001933. [CrossRef] [Google Scholar]
- Blagoveshchensky, DV, Maltseva OA, Sergeeva MA. 2018. Impact of magnetic storms on the global TEC distribution. Ann Geophys 36 (4): 1057–1071. https://doi.org/10.5194/angeo-36-1057-2018. [Google Scholar]
- Bust, GS, Liles W, Mitchell C. 2021. Space weather influences on HF, UHF, and VHF radio propagation. In: Space Weather Effects and Applications (1st edn.) Coster AJ, Erickson PJ, Lanzerotti LJ, Zhang Y, Paxton LJ (Eds.), Geophysical monograph series, Washington, DC, USA, pp. 153–163. ISBN 9781119815570. https://doi.org/10.1002/9781119815570.ch7. [Google Scholar]
- Coster, AJ, Yizengaw E. 2021. GNSS/GPS Degradation from Space Weather. In: Space Weather Effects and Applications. Coster AJ, Erickson PJ, Lanzerotti LJ, Zhang Y, Paxton LJ (Eds.), Geophysical monograph series, Wiley, Washington, DC, USA, pp. 165–181. https://doi.org/10.1002/9781119815570.ch8. [Google Scholar]
- Demyanov, V, Yasyukevich Y, Sergeeva MA, Vesnin A. 2022. Space weather impact on GNSS performance. Springer International Publishing, Cham, Switzerland. ISBN 9783031158742. https://doi.org/10.1007/978-3-031-15874-2. [Google Scholar]
- Doornbos, E, Klinkrad H. 2006. Modelling of space weather effects on satellite drag. Adv Space Res 37 (6): 1229–1239. https://doi.org/10.1016/j.asr.2005.04.097. [Google Scholar]
- Fang, T, Kubaryk A, Goldstein D, Li Z, Fuller-Rowell T, Millward G, Singer HJ, Steenburgh R, Westerman S, Babcock E. 2022. Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather 20 (11): 1–14. https://doi.org/10.1029/2022sw003193. [CrossRef] [Google Scholar]
- Fasshauer, GE. 2007. Meshfree Approximation Methods with Matlab: (With CD-ROM). World Scientific, Singapore. ISBN 9789812708632. https://doi.org/10.1142/6437. [Google Scholar]
- Feng, J, Zhang Y, Li W, Han B, Zhao Z, Zhang T, Huang R. 2023.. Analysis of ionospheric TEC response to solar and geomagnetic activities at different solar activity stages. Adv Space Res 71 (5): 2225–2239. https://doi.org/10.1016/j.asr.2022.10.032. [Google Scholar]
- Flyer, N, Fornberg B, Bayona V, Barnett GA. 2016. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J Comput Phys 321: 21–38. https://doi.org/10.1016/j.jcp.2016.05.026. [Google Scholar]
- Fornberg, B, Flyer N. 2015. A primer on radial basis functions with applications to the geosciences. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. ISBN 9781611974041. https://doi.org/10.1137/1.9781611974041. [Google Scholar]
- Ghag, K, A Raghav, Bhaskar A, Soni SL, Sathe B, Shaikh Z, Dhamane O, Tari P. 2024. Quasi-planar ICME sheath: A cause of the first two-step extreme geomagnetic storm of the 25th solar cycle observed on 23 April 2023. Adv Space Res 73 (12): 6288–6297. https://doi.org/10.1016/j.asr.2024.03.011. [Google Scholar]
- Hapgood, M. 2018. Linking space weather science to impacts – the view from the Earth. In:Extreme Events in Geospace. Elsevier, Amsterdam, Netherlands. ISBN 9780128127001. https://doi.org/10.1016/b978-0-12-812700-1.00001-7. [Google Scholar]
- Hernández-Pajares, M, Juan JM, Sanz J. 1999. New approaches in global ionospheric determination using ground GPS data. J Atmos Sol-Terr Phys 61 (16): 1237–1247. https://doi.org/10.1016/s1364-6826(99)00054-1. [Google Scholar]
- Hernández-Pajares, M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A. 2009. The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83 (3–4): 263–275. https://doi.org/10.1007/s00190-008-0266-1. [Google Scholar]
- Hernández-Pajares, M, Juan JM, Sanz J. 1997. Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci 32 (3): 1081–1089. https://doi.org/10.1029/97rs00431. [Google Scholar]
- Hoque, MM, Jakowski N, Prol FS. 2022. A new climatological electron density model for supporting space weather services. J Space Weather Space Clim 12: 1. https://doi.org/10.1051/swsc/2021044. [CrossRef] [EDP Sciences] [Google Scholar]
- Jakowski, N, Hoque MM, Mayer C. 2011a. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85 (12): 965–974. https://doi.org/10.1007/s00190-011-0455-1. [CrossRef] [Google Scholar]
- Jakowski, N, Mayer C, Hoque MM, Wilken V. 2011b. Total electron content models and their use in ionosphere monitoring. Radio Sci. 46 (6): 1–11. https://doi.org/10.1029/2010rs004620. [Google Scholar]
- Jančič, M, Slak J, Kosec G. 2021. Monomial augmentation guidelines for RBF-FD from accuracy versus computational time perspective. J Scientific Comput 87 (1): 1–18. https://doi.org/10.1007/s10915-020-01401-y. [Google Scholar]
- Jerez, GO, Hernández-Pajares M, Prol FS, Alves DBM, Monico JFG. 2020. Assessment of global ionospheric maps performance by means of ionosonde data. Rem Sens 12 (20): 3452. https://doi.org/10.3390/rs12203452. [Google Scholar]
- Kauristie, K, Andries J, P Beck, Berdermann J, Berghmans D, et al. 2021. Space weather services for civil aviation – challenges and solutions. Rem Sens 13 (18): 3685. https://doi.org/10.3390/rs13183685. [CrossRef] [Google Scholar]
- Kriegel M, Berdermann J. 2020. Ionosphere Monitoring and Prediction Center. In: 2020 European Navigation Conference (ENC). IEEE, pp. 1–10. https://doi.org/10.23919/enc48637.2020.9317443. [Google Scholar]
- Krypiak-Gregorczyk, A, P Wielgosz, Jarmolowski W. 2017. A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps. Measure Sci Technol 28 (4): 045801. https://doi.org/10.1088/1361-6501/aa58ae. [Google Scholar]
- Liu, L, He M, Yue X, Ning B, Wan W. 2010. Ionosphere around equinoxes during low solar activity. J Geophys Res Space Phys 115 (A9): 1–10. https://doi.org/10.1029/2010ja015318. [Google Scholar]
- Liu, Q, Hernández-Pajares M, Lyu H, Goss A. 2021a. Influence of temporal resolution on the performance of global ionospheric maps. J Geod 95 (3): 1–16. https://doi.org/10.1007/s00190-021-01483-y. [Google Scholar]
- Liu, Q, Hernández-Pajares M, Lyu H, Nishioka M, Yang H, et al. 2021b. Ionospheric storm scale index based on high time resolution UPC-IonSAT Global Ionospheric Maps (IsUG). Space Weather 19 (11): e2021SW002,853. https://doi.org/10.1029/2021sw002853. [Google Scholar]
- Mahbuby, H, Amerian Y. 2021. Regional Assimilation of GPS-Derived TEC into GIMs. Pure Appl Geophys 178 (4): 1317–1337. https://doi.org/10.1007/s00024-021-02681-7. [Google Scholar]
- Mahbuby, H, Amerian Y. 2022. Improving the performance of time varying spherical radial basis functions in regional VTEC modeling with sparse data. Adv Space Res 70 (3): 666–686. https://doi.org/10.1016/j.asr.2022.04.067. [Google Scholar]
- Minkwitz, D, Gerzen T, Wilken V, Jakowski N. 2014. Application of SWACI products as ionospheric correction for single-point positioning: a comparative study. J Geod 88 (5): 463–478. https://doi.org/10.1007/s00190-014-0698-8. [Google Scholar]
- Noll, CE. 2010. The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Adv Space Res 45 (12): 1421–1440. https://doi.org/10.1016/j.asr.2010.01.018. [CrossRef] [Google Scholar]
- Orús, R, Hernández-Pajares M, Juan JM, Sanz J, Garciía-Fernández M. 2002. Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol-Terr Phys 64 (18): 2055–2062. https://doi.org/10.1016/s1364-6826(02)00224-9. [Google Scholar]
- Orús, R, Hernández-Pajares M, Juan JM, Sanz J, García-Fernández M. 2003. Validation of the GPS TEC maps with TOPEX data. Adv Space Res 31 (3): 621–627. https://doi.org/10.1016/s0273-1177(03)00026-7. [Google Scholar]
- Roma-Dollase, D, Hernández-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R, et al. 2017. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92 (6): 691–706. https://doi.org/10.1007/s00190-017-1088-9. [Google Scholar]
- Schmölter, E, and J Berdermann. 2024. Weather- and space-weather-driven variability of ADS-C reports in New Zealand airspace. IEEE Trans Aerospace Electronic Syst 60 (6): 8034–8053. https://doi.org/10.1109/taes.2024.3423029. [Google Scholar]
- Schmölter, E, Berdermann J, Wilken V, Wenzel D. 2025. Should we monitor space weather effects on surveillance technologies used in air traffic management? First results. Space Weather 23 (4): e2025SW004,352. https://doi.org/10.1029/2025sw004352. [Google Scholar]
- Sreeja, V. 2016. Impact and mitigation of space weather effects on GNSS receiver performance. Geosci Lett 3 (1): 1–13. https://doi.org/10.1186/s40562-016-0057-0. [CrossRef] [Google Scholar]
- Tariq, MA, Shah M, Hernández-Pajares M, Iqbal T. 2019. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv Space Res 63 (7): 2088–2099. https://doi.org/10.1016/j.asr.2018.12.028. [Google Scholar]
- Themens, DR, Elvidge S, McCaffrey A, Jayachandran PT, Coster A, et al. 2024. The high latitude ionospheric response to the major May 2024 Geomagnetic Storm: A synoptic view. Geophys Res Lett 51 (19): 1–11. https://doi.org/10.1029/2024gl111677. [CrossRef] [Google Scholar]
- Virtanen, P, Gommers R, Oliphant TE, Haberland M, Reddy T, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17 (3): 261–272. https://doi.org/10.1038/s41592-019-0686-2. [CrossRef] [Google Scholar]
- Wahba, G 1990. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. ISBN 9781611970128. https://doi.org/10.1137/1.9781611970128. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
