Open Access
| Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Swarm 10-Year Anniversary
|
|
|---|---|---|
| Article Number | 45 | |
| Number of page(s) | 17 | |
| DOI | https://doi.org/10.1051/swsc/2025040 | |
| Published online | 24 October 2025 | |
- Aa, E, Zhang S-R, Lei J, Huang F, Erickson PJ, Coster AJ, Luo B. 2024. Significant midlatitude plasma density peaks and dual-hemisphere SED during the 10–11 May 2024 super geomagnetic storm. J Geophys Res Space Phys 129: e2024JA033360. https://doi.org/10.1029/2024JA033360. [Google Scholar]
- Aa, E, Zou S, Eastes R, Karan DK, Zhang S-R, Erickson PJ, Coster AJ. 2020. Coordinated ground-based and space-based observations of equatorial plasma bubbles. J Geophys Res Space Phys, 125: e2019JA027569. https://doi.org/10.1029/2019JA027569. [CrossRef] [Google Scholar]
- Anderson, DN. 2003. Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on a day-to-day basis. GPS Solu 7: 200–202. https://doi.org/10.1007/s10291-003-0064-4. [Google Scholar]
- Aol, S, Buchert S, Jurua E. 2020. Ionospheric irregularities and scintillations: a direct comparison of in situ density observations with ground-based L-band receivers. Earth Planets Space 72: 164. https://doi.org/10.1186/s40623-020-01294-z. [Google Scholar]
- Appleton, EV. 1946. Two anomalies in the ionosphere. Nature, 157 (3995): 691. https://doi.org/10.1038/157691a0. [CrossRef] [Google Scholar]
- Appleton, EV. 1954. The anomalous equatorial belt in the F2-layer. J Atmos Sol-Terr Phys 5 (1–6): 348–351. https://doi.org/10.1016/0021-9169(54)90054-9. [Google Scholar]
- Astafyeva, E, Zakharenkova I, Förster M. 2015. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J Geophys Res Space Phys 120: 9023–9037. https://doi.org/10.1002/2015JA021629. [CrossRef] [Google Scholar]
- Beach, TL. 2006. Perils of the GPS phase scintillation index (σϕ). Radio Sci. 41: RS5S31. https://doi:10.1029/2005RS003356. [Google Scholar]
- Berdermann, J, Kriegel M, Banys D, Heymann F, Hoque MM, Wilken V, Borries C, Heßelbarth A, Jakowski N. 2018. Ionospheric response to the X9.3 Flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather 16: 1604–1615, https://doi.org/10.1029/2018SW001933. [CrossRef] [Google Scholar]
- Cameron, TG, Fiori RAD, Perry GW, Ruck JJ, Thayaparan T. 2024. High-Latitude off-great circle propagation associated with the solar terminator. Radio Sci 59: e2023RS007917. https://doi.org/10.1029/2023RS007917. [Google Scholar]
- Carrano, CS, Groves KM, Rino CL. 2019. On the relationship between the rate of change of total electron content index (ROTI), irregularity strength (CkL), and the scintillation index (S4). J Geophys Res Space Phys 124: 2099–2112. https://doi.org/10.1029/2018JA026353. [Google Scholar]
- Cesaroni, C, Spogli L, Alfonsi L, De Franceschi G, Ciraolo L, Galera Monico JF, Scotto C, Romano V, Aquino M, Bougard B. 2015. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J Space Weather Space Clim 5: A36. https://doi.org/10.1051/swsc/2015038. [CrossRef] [EDP Sciences] [Google Scholar]
- De Franceschi, G, Alfonsi L, Romano V, Aquino M, Dodson A, Mitchell CN, Spencer P, Wernik AW. 2008. Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms. J Atmos Sol-Terr Phys 70 (6): 879–888. https://doi.org/10.1016/j.jastp.2007.05.018. [Google Scholar]
- Fejer, BG, Navarro LA, Chakrabarty D. 2024. Recent results and outstanding questions on the response of the electrodynamics of the low latitude ionosphere to solar wind and magnetospheric disturbances. Front Astron Space Sci 11: 1471140. https://doi.org/10.3389/fspas.2024.1471140. [Google Scholar]
- Foelsche, U, Kirchengast G. 2002. A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys Res Lett, 29 (10): 111. https://doi.org/10.1029/2001GL013744. [Google Scholar]
- Friis-Christensen, E, Lühr H, Knudsen D, Haagmans R. 2008. Swarm – an Earth observation mission investigating geospace. Adv Space Res, 41 (1): 210–216. [CrossRef] [Google Scholar]
- Gonzalez-Esparza, JA, Sanchez-Garcia E, Sergeeva M, Corona-Romero P, Gonzalez-Mendez LX, et al. 2024. The Mother’s Day geomagnetic storm on 10 May 2024: Aurora observations and low latitude space weather effects in Mexico. Space Weather 22: e2024SW004111. https://doi.org/10.1029/2024SW004111. [Google Scholar]
- Grandin, M, Bruus E, Ledvina VE, Partamies N, Barthelemy M, et al. 2024. The Gannon Storm: citizen science observations during the geomagnetic superstorm of 10 May 2024. Geosci Commun 7: 297–316. https://doi.org/10.5194/gc-7-297-2024. [CrossRef] [Google Scholar]
- Groves, KM, Basu S, Weber EJ, Smitham M, Kuenzler H, et al. 1997. Equatorial scintillation and systems support. Radio Sci 32: 2047–2064. https://doi.org/10.1029/97RS00836. [CrossRef] [Google Scholar]
- Hernández-Pajares, M, García-Rigo AJ, Juan JM, Sanz J, Monte E, Aragón-Ángel A. 2012. GNSS measurement of EUV photons flux rate during strong and mid solar flares. Space Weather 10: S12001. https://doi.org/10.1029/2012SW000826. [Google Scholar]
- Jakowski, N, Borries C, Wilken V. 2012. Introducing a disturbance ionosphere index. Radio Sci 47: RS0L14. https://doi.org/10.1029/2011RS004939. [Google Scholar]
- Jakowski, N, Hoque MM. 2019. Estimation of spatial gradients and temporal variations of the total electron content using ground based GNSS measurements. Space Weather 17: 2. https://doi.org/10.1029/2018SW002119. [Google Scholar]
- Jakowski NMayer C, Borries C, Pannowitsch T. 2009. Large and mid-scale ionospheric perturbation characteristics deduced from GNSS measurements. In: The Institution of Engineering and Technology 11th International Conference on Ionospheric Radio Systems and Techniques (IRST 2009), pp. 1–5. https://doi.org/10.1049/cp.2009.0065. [Google Scholar]
- Jakowski, N, Stankov SM, Schlueter S, Klaehn D. 2006. On developing a new ionospheric perturbation index for space weather operations. Adv Space Res 38 (11): 2596–2600. https://doi.org/10.1016/j.asr.2005.07.043. [Google Scholar]
- Jayachandran, PT, Hosokawa K, Shiokawa K, Otsuka Y, Watson C, Mushini SC, MacDougall JW, Prikryl P, Chadwick R, Kelly TD. 2012. GPS total electron content variations associated with poleward moving Sun-aligned arcs. J Geophys Res 117: A05310. https://doi.org/10.1029/2011JA017423. [Google Scholar]
- Jin, Y, Kotova D, Xiong C, Brask SM, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2022. Ionospheric plasma IRregularities – IPIR – Data product based on data from the Swarm satellites. J Geophys Res Space Phys 127: e2021JA030183. https://doi.org/10.1029/2021JA030183. [Google Scholar]
- Jin, Y, Xiong C, Clausen L, Spicher A, Kotova D, Brask S, Kervalishvili G, Stolle C, Miloch W. 2020. Ionospheric plasma irregularities based on in situ measurements from the Swarm satellites. J Geophys Res Space Phys 124, e2020JA028103. https://doi.org/10.1029/2020JA028103. [Google Scholar]
- Kataoka, R, Reddy SA, Nakano S, Pettit J, Nakamura Y. 2024. Extended magenta aurora as revealed by citizen science. Sci Rep 14: 25849–25849. https://doi.org/10.1038/s41598-024-75184-9. [Google Scholar]
- Kintner, PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5, S09003. https://doi:10.1029/2006SW000260. [Google Scholar]
- Klobuchar, JA. 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerospace Electronic Syst – AES 23 (3): 325–331. https://doi.org/10.1109/TAES.1987.310829. [Google Scholar]
- Kwak, Y-S, Kim J-H, Kim S, Miyashita Y, Yang T, et al. 2024. Observational overview of the May 2024 G5-level geomagnetic storm: from solar eruptions to terrestrial consequences. J Astron Space Sci 41 (3): 171–194. https://doi.org/10.5140/JASS.2024.41.3.171. [Google Scholar]
- Li, C, Hancock CM, Hamm NAS, Veettil SV, You C. 2020. Analysis of the relationship between scintillation parameters, multipath and ROTI. Sensors 20 (10): 2877. https://doi.org/10.3390/s20102877. [Google Scholar]
- Liu, Y, Xie W, Xiong C, Ye T, Wang Y, Wan X, Cao Y. 2022. Distribution characteristics of the plasma irregularities inside the mid-latitude ionospheric trough based on Swarm in situ measurements. Space Weather 20: e2021SW002991. https://doi.org/10.1029/2021SW002991. [Google Scholar]
- Lomidze, L, Knudsen DJ, Burchill J, Kouznetsov A, Buchert S. 2018. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci 53: 15–36. https://doi.org/10.1002/2017RS006415. [CrossRef] [Google Scholar]
- Lovati, G, De Michelis P, Consolini G, Berrilli F. 2022. Pressure-gradient current at high latitude from Swarm measurements. Remote Sens 14: 1428. https://doi.org/10.3390/rs14061428. [Google Scholar]
- Luo, X, Xiong C, Gu S, Lou Y, Stolle C, Wan X, Liu K, Song W. 2019. Geomagnetically conjugate observations of equatorial plasma irregularities from Swarm constellation and ground-based GPS stations. J Geophys Res Space Phys 124: 3650–3665. https://doi.org/10.1029/2019JA026515. [CrossRef] [Google Scholar]
- Ma, G, Maruyama T. 2003. Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21: 2083–2093. https://doi.org/10.5194/angeo-21-2083-2003. [Google Scholar]
- Maurya, AK, Venkatesham K, Kumar S, Singh R, Tiwari P, Singh AK. 2018. Effects of St. Patrick’s Day geomagnetic storm of March 2015 and of June 2015 on low-equatorial D region ionosphere. J Geophys Res Space Phys 123: 6836–6850. https://doi.org/10.1029/2018JA025536. [Google Scholar]
- Morozova, A, Spogli L, Barata T, Imam R, Pica E, Cahuasquí JA, Hoque MM, Jakowski N, Estaço D. 2025. Scintillations in Southern Europe during the geomagnetic storm of June 2015: analysis of a plasma bubbles spill-over using ground-based data. Remote Sens 17: 535. https://doi.org/10.3390/rs17030535. [Google Scholar]
- Nava, B, Rodríguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orué Y, Radicella SM, Amory-Mazaudier C, Fleury R. 2016. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys 121: 3421–3438. https://doi.org/10.1002/2015JA022299. [Google Scholar]
- Nayak, C, Buchert S, Yiğit E, Ankita M, Singh S, Tulasi Ram S, Dimri AP. 2025. Topside low-latitude ionospheric response to the 10–11 May 2024 super geomagnetic storm as observed by Swarm: The strongest storm-time super-fountain during the Swarm era? J Geophys Res Space Phys 130: e2024JA033340. https://doi.org/10.1029/2024JA033340. [Google Scholar]
- Nykiel, G, Cahuasquí JA, Hoque MM, Jakowski N. 2024. Relationship between GIX, SIDX, and ROTI ionospheric indices and GNSS precise positioning results under geomagnetic storms. GPS Solu 28: 69. https://doi.org/10.1007/s10291-023-01611-5. [Google Scholar]
- Olwendo, JO, Cilliers P, Weimin Z, Ming O, Yu X. 2018. Validation of ROTI for ionospheric amplitude scintillationmeasurements in a low-latitude region over Africa. Radio Sci 53: 876. https://doi.org/10.1029/2017RS006391. [Google Scholar]
- Orr, L, Beggan C, Brown W. 2024. A regional space weather hazard variation index utilising Swarm FAST data. J Space Weather Space Clim 14: 30. https://doi.org/10.1051/swsc/2024033. [Google Scholar]
- Park, J, Lühr H, Kervalishvili G, Rauberg J, Stolle C, Kwak Y-S, Lee WK. 2017. Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation. J Geophys Res Space Phys 122: 1338–1359. https://doi.org/10.1002/2016JA023086. [Google Scholar]
- Park, J, Noja M, Stolle C, Lühr H. 2013. The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm. Earth Planet Space 65: 1333–1344. https://doi.org/10.5047/eps.2013.08.005. [Google Scholar]
- Pi, X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24: 2283–2286. https://doi.org/10.1029/97GL02273. [CrossRef] [Google Scholar]
- Prol, FS, Pignalberi A, Smirnov A, Pezzopane M, Christovam AL, Selvan K, Hoque M, Kaasalainen S. 2025. Ionospheric tomography for Swarm satellite orbit determination using single-frequency GNSS data. GPS Solu 29: 26. https://doi.org/10.1007/s10291-024-01779-4. [Google Scholar]
- Sharma, AK, Gurav OB, Gaikwad HP, Chavan GA, Nade DP, Nikte SS, Ghodpage RN, Patil PT. 2018. Study of equatorial plasma bubbles using all sky imager and scintillation technique from Kolhapur station: a case study. Astrophys Space Sci 363: 83. https://doi.org/10.1007/s10509-018-3303-4. [Google Scholar]
- Spogli, L, Alberti T, Bagiacchi P, Cafarella L, Cesaroni C, et al. 2024. The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication. Ann Geophys 67 (2): 218. https://doi.org/10.4401/ag-9117. [Google Scholar]
- Thaganyana, GP, Habarulema JB, Ngwira C, Azeem I. 2022. Equatorward medium to large-scale traveling ionospheric disturbances of high latitude origin during quiet conditions. J Geophys Res Space Phys 127: e2021JA029558. https://doi.org/10.1029/2021JA029558. [CrossRef] [Google Scholar]
- Van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A Code Receivers. In: Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), pp. 1333–1342. [Google Scholar]
- Vasylyev, D, Cahuasquí JA, Hoque M, Jakowski N, Kriegel M, David P, Tagargouste Y, Buchert S, Berdermann J. 2024. Scintillation modeling with random phase gradient screens. J Space Weather Space Clim 14: 29. https://doi.org/10.1051/swsc/2024028. [Google Scholar]
- Wilken, V, Kriegel M, Jakowski N, Berdermann J. 2018. An ionospheric index suitable for estimating the degree of ionospheric perturbations. J Space Weather Space Clim 8: A19. https://doi.org/10.1051/swsc/2018008. [CrossRef] [EDP Sciences] [Google Scholar]
- Wu, DL. 2020. Ionospheric S4 Scintillations from GNSS Radio Occultation (RO) at Slant Path. Remote Sens 12: 15. https://doi.org/10.3390/rs12152373. [Google Scholar]
- Xiong, C, Stolle C, Lühr H, Park J, Fejer BG, Kervalishvili GN. 2016a. Scale analysis of equatorial plasma irregularities derived from Swarm constellation. Earth Planet Space 68: 121. https://doi.org/10.1186/s40623-016-0502-5. [Google Scholar]
- Xiong, C, Xu J, Wu K, Yuan W. 2018. Longitudinal thin structure of equatorial plasma depletions coincidently observed by Swarm constellation and all-sky imager. J Geophys Res Space Phys 123: 1593–1602. https://doi.org/10.1002/2017JA025091. [CrossRef] [Google Scholar]
- Xiong, C, Zhou Y-L, Lühr H, Ma S-Y. 2016b. Diurnal evolution of the F region electron density local time gradient at low and middle latitudes resolved by the Swarm constellation. J Geophys Res Space Phys 121: 9075–9089. https://doi.org/10.1002/2016JA023034. [Google Scholar]
- Zhao, D, Li W, Li C, Tang X, Wang Q, Hancock CM. 2022. Ionospheric phase scintillation index estimation based on 1 Hz geodetic GNSS receiver measurements by using continuous wavelet transform. Space Weather 20: e2021SW003015. https://doi.org/10.1029/2021SW003015. [Google Scholar]
- Zhou, Y-L, Lühr H, Alken P, Xiong C. 2016. New perspectives on equatorial electrojet tidal characteristics derived from the Swarm constellation. J Geophys Res Space Phys 121: 7226–7237. https://doi.org/10.1002/2016JA022713. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
