Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2025031 | |
Published online | 31 July 2025 |
- Bentéjac C, Csörgő A, Martínez-Muñoz G. 2021. A comparative analysis of gradient boosting algorithms. Artif Intell Rev 54(3): 1937–1967. https://doi.org/10.1007/s10462-020-09896-5. [Google Scholar]
- Bohlin J. 1976. The physical properties of coronal holes. In: Physics of Solar Planetary Environments: Proceedings of the International Symposium on Solar-Terrestrial Physics, June 7–18, Boulder, Colorado, vol. I, American Geophysical Union (AGU), pp. 114–128. ISBN 978-1-118-66904-4. https://doi.org/10.1029/SP007p0114. [Google Scholar]
- Boscher D, Bourdarie S, O’Brien P, Guild T, Heynderickx D, et al. 2022.PRBEM/IRBEM: V5.0.0. Zenodo. Available at https://doi.org/10.5281/zenodo.6867768. [Google Scholar]
- Boscher D, Sicard-Piet A, Lazaro D, Cayton T, Rolland G. 2014. A new proton model for low altitude high energy specification. IEEE Trans Nucl Sci 61(6): 3401–3407. https://doi.org/10.1109/TNS.2014.2365214. [CrossRef] [Google Scholar]
- Bourdarie S, Blake B, Cao JB, Friedel R, Miyoshi Y, Panasyuk M, Underwood C. 2012. Standard file format guidelines for particle fluxes, Technical Report V1.2, COSPAR Panel on Radiation Belt Environment Modeling (PRBEM). Available at https://prbem.github.io/documents/Standard_File_Format.pdf. [Google Scholar]
- Brunet A, Sicard A, Papadimitriou C, Lazaro D, Caron P. 2021. OMEP-EOR: a MeV proton flux specification model for electric orbit raising missions. J Space Weather Space Clim 11: 55. https://doi.org/10.1051/swsc/2021038. [Google Scholar]
- Czado C, Nagler T. 2022. Vine copula based modeling. Ann Rev Stat Appl 9: 453–477. https://doi.org/10.1146/annurev-statistics-040220-101153. [Google Scholar]
- Dahmen N, Papadimitriou C, Brunet A, Sicard A, Aminalragia-Giamini S, Sandberg I. 2025. Robust reanalysis of the electron radiation belt dynamics for physics driven space climatology applications. J Space Weather Space Clim 15: 13. https://doi.org/10.1051/swsc/2025009. [Google Scholar]
- Dietrich CR, Newsam GN. 1997. Fast and exact simulation of stationary gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18(4): 1088–1107. https://doi.org/10.1137/S1064827592240555. [Google Scholar]
- Durante F, Sempi C. 2010. Copula theory: an introduction. In: Copula theory and its applications, Jaworski P, Durante F, Härdle WK, Rychlik T (Eds.), Springer, Berlin, Heidelberg, pp. 3–31. ISBN 978-3-642-12465-5. https://doi.org/10.1007/978-3-642-12465-5_1. [Google Scholar]
- Frahm G, Junker M, Szimayer A. 2003. Elliptical copulas: applicability and limitations. Stat Probab Lett 63(3): 275–286. https://doi.org/10.1016/S0167-7152(03)00092-0. [Google Scholar]
- Galica GE, Dichter BK, Tsui S, Golightly MJ, Lopate C, Connell JJ. 2016. GOES-R space environment in-situ suite: instruments overview, calibration results, and data processing algorithms, and expected on-orbit performance. In: Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV, vol. 9881, SPIE, pp. 237–251. https://doi.org/10.1117/12.2228537. [Google Scholar]
- Ginet GP, O’Brien TP, Huston SL, Johnston WR, Guild TB, et al. 2013. AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment. Space Sci Rev 179(1): 579–615. https://doi.org/10.1007/s11214-013-9964-y. [CrossRef] [Google Scholar]
- Gray RM. 2006. Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory 2(3): 155–239. https://doi.org/10.1561/0100000006. [Google Scholar]
- Heynderickx D, Quaghebeur B, Wera J, Daly EJ, Evans HDR. 2004. New radiation environment and effects models in the European Space Agency’s Space Environment Information System (SPENVIS). Space Weather 2(10): S10S03. https://doi.org/10.1029/2004SW000073. [Google Scholar]
- Hudson MK, Kress BT, Mueller H-R, Zastrow JA, Bernard Blake J. 2008. Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Sol Terr Phys 70(5): 708–729. https://doi.org/10.1016/j.jastp.2007.11.003. [Google Scholar]
- Katsavrias C, Papadimitriou C, Aminalragia-Giamini S, Daglis IA, Sandberg I, Jiggens P. 2021. On the semi-annual variation of relativistic electrons in the outer radiation belt. Ann Geophys 39(3): 413–425. https://doi.org/10.5194/angeo-39-413-2021. [Google Scholar]
- Kendall MG. 1949. Rank and product-moment correlation. Biometrika 36(1/2): 177–193. https://doi.org/10.2307/2332540. [Google Scholar]
- Kwan BP, O’Brien TP. 2015. Using static percentiles of AE9/AP9 to approximate dynamic monte carlo runs for radiation analysis of spiral transfer orbits. IEEE Trans Nucl Sci 62(3): 1357–1361. https://doi.org/10.1109/TNS.2015.2423235. [Google Scholar]
- LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521(7553): 436–444. https://doi.org/10.1038/nature14539. [Google Scholar]
- Marquez L, Hill T, Worthley R, Remus W. 1991. Neural network models as an alternative to regression. In: Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences, vol. 4, Kauai, HI, USA, 08–11 January, pp. 129–135. https://doi.org/10.1109/HICSS.1991.184052. [Google Scholar]
- Miyoshi Y, Kasaba Y, Shinohara I, Takashima T, Asamura K, et al. 2017. Geospace exploration project: arase (ERG). J Phys Conf Ser 869(1): 012095. https://doi.org/10.1088/1742-6596/869/1/012095. [Google Scholar]
- Miyoshi Y, Kataoka R. 2011. Solar cycle variations of outer radiation belt and its relationship to solar wind structure dependences. J Atmos Sol Terr Phys 73(1): 77–87. https://doi.org/10.1016/j.jastp.2010.09.031. [Google Scholar]
- Morley SK, Sullivan JP, Carver MR, Kippen RM, Friedel RHW, Reeves GD, Henderson MG. 2017. Energetic particle data from the global positioning system constellation. Space Weather 15(2): 283–289. https://doi.org/10.1002/2017SW001604. [CrossRef] [Google Scholar]
- Müller D, Czado C. 2019. Dependence modelling in ultra high dimensions with vine copulas and the graphical lasso. Comput Stat Data Anal 137: 211–232. https://doi.org/10.1016/j.csda.2019.02.007. [Google Scholar]
- Nelsen RB. 1997. Dependence and order in families of archimedean copulas. J Multivariate Anal 60(1): 111–122. https://doi.org/10.1006/jmva.1996.1646. [Google Scholar]
- O’Brien TP. 2005. A framework for next-generation radiation belt models. Space Weather 3(7): S07B02. https://doi.org/10.1029/2005SW000151. [Google Scholar]
- O’Brien TP, Johnston WR, Huston SL, Roth CJ, Guild TB, Su Y-J, Quinn RA. 2018. Changes in AE9/AP9-IRENE version 1.5. IEEE Trans Nucl Sci 65(1): 462–466. https://doi.org/10.1109/TNS.2017.2771324. [CrossRef] [Google Scholar]
- Olson WP, Pfitzer KA. 1974. A quantitative model of the magnetospheric magnetic field. J Geophys Res 79(25): 3739–3748. https://doi.org/10.1029/JA079i025p03739. [Google Scholar]
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res 12(85): 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html. [Google Scholar]
- Sawyer DM, Vette JI. 1976. AP-8 trapped proton environment for solar maximum and solar minimum, Technical Report NSSDC/WDC-A-R/S-76-06. Available at https://ntrs.nasa.gov/citations/19770012039. [Google Scholar]
- Sicard A, Boscher D, Bourdarie S, Lazaro D, Standarovski D, Ecoffet R. 2018. GREEN: the new global radiation earth environment model (beta version). Ann Geophys 36(4): 953–967. https://doi.org/10.5194/angeo-36-953-2018. [Google Scholar]
- Sicard-Piet A, Bourdarie S, Boscher D, Friedel RHW, Thomsen M, Goka T, Matsumoto H, Koshiishi H. 2008. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV. Space Weather 6(7): S07003. https://doi.org/10.1029/2007SW000368. [CrossRef] [Google Scholar]
- Vette JI. 1991. The AE-8 trapped electron model environment. Technical Report NSSDC/WDC-A-RS-91-24, National Space Science Data Center (NSSDC), World Data Center A for Rockets and Satellites. Available at https://ntrs.nasa.gov/citations/19920014985. [Google Scholar]
- Zeiler M, Ranzato M, Monga R, Mao M, Yang K, et al. 2013. On rectified linear units for speech processing. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26-31 May IEEE, pp. 3517–3521. https://doi.org/10.1109/ICASSP.2013.6638312. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.