Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Fast and slow solar winds: Origin, evolution and Space Weather effects
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2025027 | |
Published online | 31 July 2025 |
- Abraham-Shrauner B, Yun SH. 1976. Interplanetary shocks seen by Ames Plasma Probe on Pioneer 6 and 7, J Geophys Res, 81: 2097–2102. https://doi.org/10.1029/JA081i013p02097. [Google Scholar]
- Alexandrova O, Carbone V, Veltri P, Sorriso-Valvo L. 2007. Solar wind Cluster observations: turbulent spectrum and role of Hall effect. Planet Space Sci, 55: 2224–2227. https://doi.org/10.1016/j.pss.2007.05.022. [Google Scholar]
- Baumjohann W, Treumann RA 1997. Basic space plasma physics, Imperial College Press, London, UK. https://doi.org/10.1142/p020. [Google Scholar]
- Burgess D. 1993. Collisionless shocks. In: Introduction to space physics, Kivelson MG, Russell CT (Eds), Cambridge University Press, Cambridge, UK, pp. 129–163. [Google Scholar]
- Burlaga LF. 1971. Hydromagnetic waves and discontinuities in the solar wind. Space Sci Rev 12(5): 600–657. https://doi.org/10.1007/BF00173345. [Google Scholar]
- Cash MD, Wrobel JS, Cosentino KC, Reinard AA. 2014. Characterizing interplanetary shocks for development and optimization of an automated solar wind shock detection algorithm. J. Geophys. Res. Space Phys 119: 4210–4222. https://doi.org/10.1002/2014JA019800. [Google Scholar]
- Chat GL, Issautier K, Meyer-Vernet N, Hoang S. 2011. Large-scale variation of solar wind electron properties from quasi-thermal noise spectroscopy: Ulysses measurements. Solar Phys 271: 141–148. https://doi.org/10.1007/s11207-011-9797-3. [Google Scholar]
- Dimmock AP, Gedalin M, Lalti A, Trotta D, Khotyaintsev YV, et al. 2023. Backstreaming ions at a high Mach number interplanetary shock. A&A 679: A106. https://doi.org/10.1051/0004-6361/202347006. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Echer E, Tsurutani BT, Guarnieri FL, Kozyra JU. 2011. Interplanetary fast forward shocks and their geomagnetic effects: CAWSES events. J Atmos Sol-Terr Phys 73: 1330–1338. https://doi.org/10.1016/j.jastp.2010.09.020. [Google Scholar]
- Gopalswamy N. 2006. Properties of interplanetary coronal mass ejections. Space Sci Rev 124: 145–168. https://doi.org/10.1007/s11214-006-9102-1. [Google Scholar]
- Gosling JT, Pizzo VJ. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci Rev 89: 21–52. https://doi.org/10.1023/A:1005291711900. [CrossRef] [Google Scholar]
- Hansen RT, Garcia CJ, Grognard RJM, Sheridan KV. 1971. A coronal disturbance observed simultaneously with a white-light corona-meter and the 80 MHz Culgoora radioheliograph. Publ Astron Soc Aust 2: 57–60. https://doi.org/10.1017/S1323358000012856. [Google Scholar]
- Heber B, Sanderson TR, Zhang M. 1999. Corotating interaction regions. Adv Space Res 23: 567–579. https://doi.org/10.1016/S0273-1177(99)80013-1. [Google Scholar]
- Horbury TS, O’Brien H, Carrasco Blazquez I, Bendyk M, Brown P, Hudson R, Evans V, Oddy TM. 2020. The Solar Orbiter magnetometer. A&A 642: 9. https://doi.org/10.1051/0004-6361/201937257. [Google Scholar]
- Kilpua EKJ, Lumme E, Andreeova K, Isavnin A, Koskinen HEJ. 2015. Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013). J Geophys Res Space Phys 120: 4112–4125. https://doi.org/10.1002/2015JA021138. [CrossRef] [Google Scholar]
- Kruparova O, Maksimovic M, Šafránková J, Němeček Z, Santolík O, Krupar V. 2013. Automated interplanetary shock detection and its application to Wind observations. J Geophys Res Space Phys 118: 4793–4803. https://doi.org/10.1002/jgra.50468. [Google Scholar]
- Lalti A, Khotyaintsev YuV, Dimmock AP, Johlander A, Graham DB, Olshevsky V. 2022. A database of MMS bow shock crossings compiled using machine learning. J Geophys Res Space Phys 127: e2022JA030454. https://doi.org/10.1029/2022JA030454. [Google Scholar]
- Marcowith A, Bret A, Bykov A, Dieckman ME, Drury LO’C, et al.. 2016. The microphysics of collisionless shock waves. Rept Prog Phys 79: 046901. https://doi.org/10.1088/0034-4885/79/4/046901. [Google Scholar]
- Moreland K, Dayeh MA, Li G, Farahat A, Ebert RW, Desai MI. 2023. Variability of interplanetary shock and associated energetic particle properties as a function of the time window around the shock. Astrophys J 956: 107. https://doi.og/10.3847/1538-4357/acec6c. [Google Scholar]
- Müller D, Cyr OCSt, Zouganelis I, Gilbert HR, Marsden R, Nieves-Chinchilla T, et al. 2020. The Solar Orbiter mission science overview. A&A 642: A1. https://doi.org/10.1051/0004-6361/202038467. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Oliveira DM 2023. Interplanetary shock data base. Front Astron. Space Sci. 10: 1240323. https://doi.org/10.3389/fspas.2023.1240323. [Google Scholar]
- Oliveira DM, Ngwira CM 2017. Geomagnetically induced currents: principles. Braz J Phys 47: 552–560. https://doi.org/10.1007/s13538-017-0523-y. [Google Scholar]
- Owen CJ, Bruno R, Livi S, Louarn P, Janabi Al, et al. 2020. The Solar Orbiter Solar Wind Analyser (SWA) suite. A&A 642: A16. https://doi.org/10.1051/0004-6361/201937259. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schwartz SJ. 1998. Shock and Discontinuity normals, mach numbers, and related parameters. In: Analysis Methods for Multi-Spacecraft Data, Paschmann G, Daly W, ISSI Scientific Report SR-001, ESA Publications Division, pp. 249–270. [Google Scholar]
- Trotta D, Vuorinen L, Hietala H, Horbury T, Dresing N, et al.. 2022. Single-spacecraft techniques for shock parameters estimation: A systematic approach. Front Astron Space Sci 9: 1005672. https://doi.org/10.3389/fspas.2022.1005672. [Google Scholar]
- Trotta D, Horbury TS, Lario D, Vainio R, Dresing N, et al.. 2023. Irregular proton injection to high energies at interplanetary shocks. Astrophys J Lett 957: L13. https://doi.org/10.3847/2041-8213/ad03f6. [Google Scholar]
- Trotta D, Larosa A, Nicolaou G, Horbury TS, Matteini L, et al.. 2024a. Properties of an interplanetary shock observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter. Astrophys J 962: 147. https://doi.org/10.3847/1538-4357/ad187d. [Google Scholar]
- Trotta D, Hietala H, Dresing N, Horbury T, Kartavykh Y, et al.. 2020. Solar Orbiter cycle 25 interplanetary shock list [Data set]. Zenodo. Available at https://doi.org/10.5281/zenodo.12518015. [Google Scholar]
- Trotta D, Dimmock A, Hietala H, Blanco-Cano X, Horbury TS, et al. 2025. An overview of Solar Orbiter observations of interplanetary shocks in solar cycle 25. Astrophys J Suppl Ser 277(1): 2. https://doi.org/10.3847/1538-4365/ada4a7. [Google Scholar]
- Tsurutani BT, Lakhina GS, Verkhoglyadova OP, Gonzalez WD, Echer E, Guarnieri FL. 2010. A review of interplanetary discontinuities and their geomagnetic effects. J Atmos Sol-Terr Phys, 73: 5–19. https://doi.org/10.1016/j.jastp.2010.04.001. [Google Scholar]
- Wilson LB, Brosius AL, Gopalswamy N, Nieves-Chinchilla T, Szabo A, et al. 2021. A quarter century of Wind spacecraft discoveries. Rev Geophys 59: e2020RG000714. https://doi.org/10.1029/2020RG000714. [Google Scholar]
- Yang L, Heidrich-Meisner V, Wang W, Wimmer-Schweingruber RF, Wang L, et al.. 2024. Dynamic acceleration of energetic protons by an interplanetary collisionless shock. A&A 686: A132. https://doi.org/10.1051/0004-6361/202348723. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.