Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A6
Number of page(s) 5
Published online 27 February 2015
  • Baker, C.P., D.L. Hall, J.E. Humble, and M.L. Duldig. Atmospheric correction analysis for the Mawson muon telescopes. Proc. of 23th International Cosmic Ray Conference, Calgary, 3, p. 753, 1993. [Google Scholar]
  • Barrett, P., et al. Interpretation of cosmic-ray measurements for underground. Rev. Mod. Phys., 24, 133, 1952. [CrossRef] [Google Scholar]
  • Berkova, M., A. Belov, E. Eroshenko, and V. Yanke. Temperature effect of muon component and practical questions of how to take into account in real time. Astrophys. Space Sci. Trans., 8, 41–44, 2012, [CrossRef] [Google Scholar]
  • Braga, C.R., A. Dal Lago, T. Kuwabara, N.J. Schuch, and K. Munakata. Temperature effect correction for the cosmic ray muon data observed at the Brazilian Southern Space Observatory in São Martinho da Serra. J. Phys.: Conf. Ser., 409, 012138, 2013. [CrossRef] [Google Scholar]
  • Dorman, L.I. On the temperature effect of the hard component of cosmic rays. Dokl. Akad. Sci. Nauk SSSR, 95, 49, 1964. [Google Scholar]
  • Dorman, L.I. Cosmic rays. Variations and space explorations, North-Holland, Amsterdam, 1974. [Google Scholar]
  • Dorman, L.I. Cosmic rays in the Earth’s atmosphere and underground, Kluwer Academic Publishers, USA, 2004. [CrossRef] [Google Scholar]
  • Duldig, M.L. Muon observations. Space Sci. Rev., 93, 207–226, 2000. [CrossRef] [Google Scholar]
  • Duperier, A. The meson intensity at the surface of the Earth and the temperature at the production level. Proc. Phys. Soc., 62A, 684–696, 1949. [CrossRef] [Google Scholar]
  • Dvornikov, V.M., Yu.Ya. Krestyannikov, and A.V. Sergeev. Determination of the mass-average temperature on the cosmic ray intensity data. Geomag. Aeron., 16 (5), 923–925, 1976. [Google Scholar]
  • Ganeva, M., S. Peglow, R. Hippler, M. Berkova, and V. Yanke. Seasonal variations of the muon flux seen by muon telescope MuSTAnG. J. Phys.: Conf. Ser., 409, 012242, 2013, DOI: 10.1088/1742-6596/409/1/012242. [CrossRef] [Google Scholar]
  • Hippler, R., A. Mengel, F. Jansen, G. Bartling, W. Göhler, et al. First space weather observations at MuSTAnG – the muon space weather telescope for anisotropies at Greifswald. Proc. of 30th International Cosmic Ray Conference, Mexico, 1, pp. 347–350, 2008. [Google Scholar]
  • Hippler, R., and M. Zazyan. Simulation of MuSTAnG telescope response to cosmic rays. Proc. Cosmic Ray Summer School, Nor-Amberd International Conference Center, p. 30, 2012. [Google Scholar]
  • Jansen, F., K. Munakata, M.L. Duldig, and R. Hippler. Muon detectors – the real-time, ground based forecast of geomagnetic storms in Europe. ESA Space Weather Workshop: Looking towards a European Space Weather Programme, 2001, ESA WPP-144. [Google Scholar]
  • Maeda, K., and M. Wada. Atmospheric temperature effect upon the cosmic ray intensity at sea level. J. Sci. Res. Inst., Tokyo, 48, 71–79, 1954. [Google Scholar]
  • Olbert, S. Atmospheric effects on cosmic ray intensity near sea level. Phys. Rev., 92, 454, 1953. [CrossRef] [Google Scholar]
  • Okazaki, Y., A. Fushishita, T. Narumi, C. Kato, S. Yasue, et al. Drift effects and the cosmic ray density gradient in a solar rotation period: First observation with the Global Muon Detector Network (GMDN). Astrophys. J., 681, 693–707, 2008. [CrossRef] [Google Scholar]
  • Sagisaka, S. Atmospheric effects on cosmic-ray muon intensities at deep underground depths. Nuovo Cimento C, 9, 809, 1986. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.