Open Access
Research Article
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A40
Number of page(s) 32
DOI https://doi.org/10.1051/swsc/2018027
Published online 21 September 2018
  • Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al. 2003. GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res A 506: 250–303, DOI: 10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
  • Agueda N, Lario D, Ontiveros V, Kilpua E, Sanahuja B, Vainio R. 2012. Multi-spacecraft Study of the 8 November 2000 SEP Event: Electron Injection Histories 100 Apart. Sol Phys 281(1):319–331. [Google Scholar]
  • Agueda N, Lario D, Vainio R, Sanahuja B, Kilpua E, Pohjolainen S. 2009. Modeling solar near-relativistic electron events. Insights into solar injection and interplanetary transport conditions. A&A 507: 981–993. DOI: 10.1051/0004-6361/200912224. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Aran A, Lario D, Sanahuja B, Marsden R, Dryer M, Fry C, McKenna-Lawlor S. 2007. Modeling and forecasting solar energetic particle events at Mars: the event on 6 March 1989. A&A 469(3): 1123–1134. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Aschwanden MJ. 2012. GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci Rev 171(1–4): 3–21. [Google Scholar]
  • Belov A. 2008. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc Int. Astron Union 4(S257): 439–450. [CrossRef] [Google Scholar]
  • Bieber JW, Clem J, Evenson P, Pyle R, Duldig M, Humble J, Ruffolo D, Rujiwarodom M, Sa´iz A. 2005. Largest GLE in half a century: Neutron monitor observations of the January 20, 2005 event. International Cosmic Ray Conference 1: 237. [Google Scholar]
  • Bisi MM, Breen A, Jackson B, Fallows R, Walsh A, et al. 2010. From the Sun to the Earth: The 13 May 2005 coronal mass ejection. Sol Phys 265(1–2): 49–127. [Google Scholar]
  • Bougeret J-L, Kaiser ML, Kellogg PJ, Manning R, Goetz K, et al. 1995. Waves: The Radio and Plasma Wave Investigation on the Wind Spacecraft. Space Sci Rev 71: 231–263. DOI: 10.1007/BF00751331. [Google Scholar]
  • Bühler P, Zehnder A, Desorgher L, Hajdas W, Daly E, Adams L 1996. Simple instruments for continuous measurements of trapped particles. Burke W, Guyenne T-D, Editors, Environment Modelling for Space-Based Applications, vol. 392 of ESA Symposium Proceedings. [Google Scholar]
  • Burlaga L, Sittler E, Mariani F, Schwenn R. 1981. Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J Geophys Res 86: 6673–6684. DOI: 10.1029/JA086iA08p06673. [Google Scholar]
  • Cane HV, Richardson IG, Von Rosenvinge TT. 2010. A study of solar energetic particle events of 1997–2006: Their composition and associations. J Geophys Res (Space Phys) (1978–2012) 115: 1–18. DOI: 10.1029/2009JA014848. [Google Scholar]
  • Cane HV, Erickson WC, Prestage NP. 2002. Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J Geophys Res (Space Phys) 107: 1315. DOI: 10.1029/2001JA000320. [Google Scholar]
  • Cane HV, Lario D. 2006. An Introduction to CMEs and Energetic Particles. Space Sci Rev 123: 45–56. DOI: 10.1007/s11214-006-9011-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane HV, McGuire RE, von Rosenvinge TT. 1986. Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. ApJ 301: 448–459. DOI: 10.1086/163913. [NASA ADS] [CrossRef] [Google Scholar]
  • Cid C, Cremades H, Aran A, Mandrini C, Sanahuja B, et al. 2012. Can a halo CME from the limb be geoeffective? J Geophys Res (Space Phys) 117: A11102. DOI: 10.1029/2012JA017536. [Google Scholar]
  • Claßen HT, Mann G, Klassen A, Aurass H. 2003. Relative timing of electron acceleration and injection at solar flares: A case study. A&A 409: 309–316. DOI: 10.1051/0004-6361:20031097. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Cowan G. 1998. Statistical Data Analysis. Oxford University Press, ISBN 019850155. [Google Scholar]
  • Crosby N, Heynderickx D, Jiggens P, Aran A, Sanahuja B, et al. 2015. SEPEM: A tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–426. DOI: 10.1002/2013SW001008. [CrossRef] [Google Scholar]
  • Daglis IA 2001. Space storms, ring current and space-atmosphere coupling. Daglis IA, Editor, Space Storms and Space Weather Hazards, Springer, Dordrecht, 1–42. [Google Scholar]
  • Dasso S, Mandrini C, Schmieder B, Cremades H, Cid C, et al. 2009. Linking two consecutive nonmerging magnetic clouds with their solar sources. J Geophys Res (Space Phys) (1978–2012) 114(A2). [Google Scholar]
  • Davis CJ, Davies JA, Owens MJ, Lockwood M. 2012. Predicting the arrival of high-speed solar wind streams at Earth using the STEREO Heliospheric Imagers. Space Weather 10: S02003. DOI: 10.1029/2011SW000737. [CrossRef] [Google Scholar]
  • Delaboudinière J-P, Artzner GE, Brunaud J, Gabriel AH, Hochedez JF, et al. 1995. EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission. Sol Phys 162: 291–312. DOI: 10.1007/BF00733432. [Google Scholar]
  • Dennis BR, Hudson HS, Krucker S. 2007. Review of selected RHESSI solar results. Klein K-L, MacKinnon AL, Eds. vol. 725 of Lecture Notes in Physics, Berlin Springer Verlag 33. [Google Scholar]
  • Desai M, Burgess D. 2008. Particle acceleration at coronal mass ejection–driven interplanetary shocks and the Earth’s bow shock. J Geophys Res (Space Phys) (1978–2012) 113(A9). [Google Scholar]
  • Desai MI, Mason GM, Dwyer JR, Mazur JE, Gold RE, Krimigis SM, Smith CW, Skoug RM. 2003. Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. ApJ 588: 1149–1162. DOI: 10.1086/374310. [NASA ADS] [CrossRef] [Google Scholar]
  • Desorgher L, Hajdas W, Britvitch I, Egli K, Guo X, et al. 2013. The Next Generation Radiation Monitor-NGRM. In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 1–6. DOI: 10.1109/NSSMIC.2013.6829497. [Google Scholar]
  • Dichter BK, McGarity JO, Oberhardt MR, Jordanov VT, Sperry DJ, Huber AC, Pantazis JA, Mullen EG, Ginet G, Gussenhoven MS. 1998. Compact environmental anomaly sensor (CEASE): a novel spacecraft instrument for in situ measurements of environmental conditions. IEEE Trans Nucl Sci 45(6): 2758–2764. DOI: 10.1109/23.736525. [CrossRef] [Google Scholar]
  • Domingo V, Fleck B, Poland A. 1995. SOHO: the solar and heliospheric observatory. Space Sci Rev 72(1–2): 81–84. [NASA ADS] [CrossRef] [Google Scholar]
  • Dresing N, Gómez-Herrero R, Heber B, Klassen A, Malandraki O, Dröge W, Kartavykh Y. 2014. Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. A&A 567: A27. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Evans HDR, Bühler P, Hajdas W, Daly EJ, Nieminen P, Mohammadzadeh A. 2008. Results from the ESA SREM monitors and comparison with existing radiation belt models. Adv Space Res 42: 1527–1537. DOI: 10.1016/j.asr.2008.03.022. [Google Scholar]
  • Forbes TG, Linker JA, Chen J, Cid C, Kóta J, et al. 2006. CME Theory and Models. Space Sci Rev 123: 251–302. DOI: 10.1007/s11214-006-9019-8. [CrossRef] [Google Scholar]
  • Freeland SL, Handy BN. 1998. Data Analysis with the SolarSoft System. Sol Phys 182: 497–500. DOI: 10.1023/A:1005038224881. [Google Scholar]
  • Gallagher PT, McAteer RTJ, Young CA, Ireland J, Hewett RJ, Conlon P. 2007. Solar Activity Monitoring. In: Lilensten J, Editor, Space Weather: Research Towards Applications in Europe 2nd European Space Weather Week (ESWW2), vol. 344 of Astrophysics and Space Science Library 15. DOI: 10.1007/1-4020-5446-7-3. [Google Scholar]
  • Glassmeier K-H, Boehnhardt H, Koschny D, Kührt E, Richter I. 2007. The Rosetta Mission: Flying Towards the Origin of the Solar System. Space Sci Rev 128: 1–21. DOI: 10.1007/s11214-006-9140-8. [CrossRef] [Google Scholar]
  • Golub L, Deluca E, Austin G, Bookbinder J, Caldwell D, et al. 2007. The X-Ray Telescope (XRT) for the Hinode Mission. Sol Phys 243: 63–86. DOI: 10.1007/s11207-007-0182-1. [CrossRef] [Google Scholar]
  • Gopalswamy N, Davila JM, Cyr OCSt, Sittler EC, Auchère F, et al. 2011. Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5. J Atmos Sol Terr Phys 73: 658–663. DOI: 10.1016/j.jastp.2011.01.013. [Google Scholar]
  • Gosling JT. 1993. The solar flare myth. J Geophys Res 98: 18937–18950. DOI: 10.1029/93JA01896. [Google Scholar]
  • Haggerty DK, Roelof EC. 2002. Impulsive Near-relativistic Solar Electron Events: Delayed Injection with Respect to Solar Electromagnetic Emission. ApJ 579: 841–853. DOI: 10.1086/342870. [NASA ADS] [CrossRef] [Google Scholar]
  • Hajdas W, Adams L, Nickson B, Zehnder A. 1996. The Proton Irradiation Facility at the Paul Scherrer Institute. Nucl Instrum Methods Phys Res B 113: 54–58. DOI: 10.1016/0168-583X(95)01327-X. [NASA ADS] [CrossRef] [Google Scholar]
  • Hajdas W, Bühler P, Eggel C, Favre P, Mchedlishvili A, Zehnder A. 2003. Radiation environment along the INTEGRAL orbit measured with the IREM monitor. A&A 411: L43–L47. DOI: 10.1051/0004-6361:20031251. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Handy BN, Acton LW, Kankelborg CC, Wolfson CJ, Akin DJ, et al. 1999. The transition region and coronal explorer. Sol Phys 187: 229–260. DOI: 10.1023/A:1005166902804. [CrossRef] [Google Scholar]
  • Heras AM, Sanahuja B, Lario D, Smith ZK, Detman T, Dryer M. 1995. Three low-energy particle events: Modeling the influence of the parent interplanetary shock. ApJ 445: 497–508. DOI: 10.1086/175714. [NASA ADS] [CrossRef] [Google Scholar]
  • Hillaris A, Malandraki O, Klein K-L, Preka-Papadema P, Moussas X, Bouratzis C, Mitsakou E, Tsitsipis P, Kontogeorgos A. 2011. The 17 January 2005 Complex Solar Radio Event Associated with Interacting Fast Coronal Mass Ejections. Sol Phys 273: 493–509. DOI: 10.1007/s11207-011-9872-9. [CrossRef] [Google Scholar]
  • Hock RA, Chamberlin PC, Woods TN, Crotser D, Eparvier FG, Woodraska DL, Woods EC. 2012. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results. Sol Phys 275: 145–178. DOI: 10.1007/s11207-010-9520-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Höcker A, Kartvelishvili V. 1996. SVD approach to data unfolding. Nucl Instrum Methods Phys Res A 372: 469–481. DOI: 10.1016/0168-9002(95)01478-0, hep-ph/9509307. [Google Scholar]
  • Kaiser ML, Kucera TA, Davila JM, Cyr OCSt, Guhathakurta M, Christian E. 2008. The STEREO Mission: An Introduction. Space Sci Rev 136: 5–16. DOI: 10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
  • Kerdraon A, Delouis J-M. 1997. Coronal physics from radio and space observations, vol. 483 of Lecture Notes in Physics 192, Springer Verlag, Berlin. DOI: 10.1007/BFb0106458. [Google Scholar]
  • Klecker B. 2013. Current understanding of SEP acceleration and propagation. J. Phys: Conf. Ser. 409: 012015. IOP Publishing. [CrossRef] [Google Scholar]
  • Kleimann J. 2012. 4 π Models of CMEs and ICMEs (Invited Review). Sol Phys 281: 353–367. DOI: 10.1007/s11207-012-9994-8. [Google Scholar]
  • Kocharov L, Torsti J. 2002. Hybrid solar energetic particle events observed on board SOHO. Sol Phys 207(1): 149–157. [NASA ADS] [CrossRef] [Google Scholar]
  • Koshiishi H, Enome S, Nakajima H, Shibasaki K, Nishio M, et al. 1994. Evaluation of the imaging performance of the Nobeyama Radioheliograph. Pub Astron Soc Japan 46: L33–L36. [Google Scholar]
  • Kouloumvakos A, Patsourakos S, Nindos A, Vourlidas A, Anastasiadis A, Hillaris A, Sandberg I. 2016. Multi-viewpoint observations of a widely-distributed solar energetic particle event: the role of EUV waves and White Light shock signatures. ApJ 821: 31. [NASA ADS] [CrossRef] [Google Scholar]
  • Krucker S, Larson DE, Lin RP, Thompson BJ. 1999. On the Origin of Impulsive Electron Events Observed at 1 AU. ApJ 519: 864–875. DOI: 10.1086/307415. [NASA ADS] [CrossRef] [Google Scholar]
  • Lario D, Aran A, Decker RB. 2009. Major Solar Energetic Particle Events of Solar Cycles 22 and 23: Intensities Close to the Streaming Limit. Sol Phys 260: 407–421. DOI: 10.1007/s11207-009-9463-1. [CrossRef] [Google Scholar]
  • Lario D, Aran A, Gómez-Herrero R, Dresing N, Heber B, Ho G, Decker R, Roelof E. 2013. Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. ApJ 767(1): 41. [NASA ADS] [CrossRef] [Google Scholar]
  • Lario D, Decker RB, Malandraki OE, Lanzerotti LJ. 2008. Influence of large-scale interplanetary structures on energetic particle propagation: September 2004 event at Ulysses and ACE. J Geophys Res (Space Phys) 113: A03105.DOI: 10.1029/2007JA012721. [Google Scholar]
  • Lario D, Kwon R-Y, Vourlidas A, Raouafi N, Haggerty D, et al. 2016. Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: Evolution of the associated CME shock. ApJ 819(1): 72. [NASA ADS] [CrossRef] [Google Scholar]
  • Lario D, Sanahuja B, Heras AM. 1998. Energetic particle events: Efficiency of Interplanetary Shocks as 50 keV < E < 100 MeV Proton Accelerators. ApJ 509: 415–434. DOI: 10.1086/306461. [NASA ADS] [CrossRef] [Google Scholar]
  • Lawrence G, Berghmans D, Hochedez J-F, Ben-Moussa A, Defise J-M, et al. 2005. Space Weather with ESA’s PROBA2 Mission. in: Fleck B, Zurbuchen TH, Lacoste H, Eds. Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, vol. 592 of ESA Special Publication, 685. [Google Scholar]
  • Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, et al. 2002. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol Phys 210: 3–32. DOI: 10.1023/A:1022428818870. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu R, Alexander D, Gilbert HR. 2009. Asymmetric Eruptive Filaments. ApJ 691: 1079–1091. DOI: 10.1088/0004-637X/691/2/1079. [CrossRef] [Google Scholar]
  • MacQueen RM, Eddy JA, Gosling JT, Hildner E, Munro RH, Newkirk GA Jr, Poland AI, Ross CL. 1974. The outer solar corona as observed from Skylab: Preliminary results. ApJL 187: L85. DOI: 10.1086/181402. [NASA ADS] [CrossRef] [Google Scholar]
  • Maia D, Pick M, Vourlidas A, Howard R. 2000. Development of coronal mass ejections: Radio shock signatures. ApJL 528: L49–L51. DOI: 10.1086/312421. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Maia DJF, Pick M. 2004. Revisiting the Origin of Impulsive Electron Events: Coronal Magnetic Restructuring. ApJ 609: 1082–1097. DOI: 10.1086/386319. [NASA ADS] [CrossRef] [Google Scholar]
  • Malandraki OE, Agueda N, Papaioannou A, Klein K-L, Valtonen E, et al. 2012. Scientific analysis within SEPServer – New perspectives in solar energetic particle research: The case study of the 13 July 2005 event. Sol Phys 281: 333–352. DOI: 10.1007/s11207-012-0164-9. [Google Scholar]
  • Malandraki OE, Marsden RG, Lario D, Tranquille C, Heber B, et al. 2009. Energetic particle observations and propagation in the three-dimensional heliosphere during the 2006 December events. ApJ 704: 469–476. DOI: 10.1088/0004-637X/704/1/469 [CrossRef] [Google Scholar]
  • Malandraki OE, Marsden RG, Tranquille C, Forsyth RJ, Elliott HA, Geranios A. 2008. Energetic particle measurements from the Ulysses/COSPIN/LET instrument obtained during the August/September 2005 events. Ann Geophys 26: 1029–1037. DOI: 10.5194/angeo-26-1029-2008. [CrossRef] [Google Scholar]
  • McComas DJ, Bame SJ, Barker P, Feldman WC, Phillips JL, Riley P, Griffee JW. 1998. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci Rev 86: 563–612. DOI: 10.1023/A:1005040232597. [Google Scholar]
  • Mikić Z, Lee MA. 2006. An Introduction to theory and models of CMEs, shocks, and solar energetic particles. Space Sci Rev 123: 57–80. DOI: 10.1007/s11214-006-9012-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Mohammadzadeh A, Evans H, Nieminen P, Daly E, Vuilleumier P, et al. 2003. The ESA standard radiation environment monitor program first results from PROBA-I and INTEGRAL. IEEE Trans Nucl Sci 50: 2272–2277. DOI: 10.1109/TNS.2003.821796. [NASA ADS] [CrossRef] [Google Scholar]
  • Möstl C, Amla K, Hall JR, Liewer PC, De Jong EM, et al. 2014. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. ArXiv e-prints 1404.3579 [Google Scholar]
  • Möstl C, Davies JA. 2013. Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Sol Phys 285: 411–423. [Google Scholar]
  • Ng CK, Reames DV. 1994. Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfven waves. ApJ 424: 1032–1048. DOI: 10.1086/173954. [NASA ADS] [CrossRef] [Google Scholar]
  • Nolte JT, Roelof EC. 1973. Large-scale structure of the interplanetary medium. II: Evolving magnetic configurations deduced from multi-spacecraft observations. Sol Phys 33: 483–504. DOI: 10.1007/BF00152435. [NASA ADS] [CrossRef] [Google Scholar]
  • Núñez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather 13: 807–819. DOI: 10.1002/2015SW001256. [CrossRef] [Google Scholar]
  • Olmedo O, Zhang J, Wechsler H, Poland A, Borne K. 2008. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol Phys 248: 485–499. DOI: 10.1007/s11207-007-9104-5. [Google Scholar]
  • Pan ZH, Wang CB, Wang Y, Xue XH. 2011. Correlation analyses between the characteristic times of gradual solar energetic particle events and the properties of associated coronal mass ejections. Sol Phys 270: 593–607. DOI: 10.1007/s11207-011-9763-0. [Google Scholar]
  • Papaioannou A, Malandraki O, Belov A, Skoug R, Mavromichalaki H, Eroshenko E, Abunin A, Lepri S. 2010. On the analysis of the complex Forbush decreases of January 2005. Sol Phys 266(1): 181–193. [NASA ADS] [CrossRef] [Google Scholar]
  • Papaioannou A, Mavromichalaki H, Eroshenko E, Belov A, Oleneva V. 2009. The burst of solar and geomagnetic activity in August–September 2005. Ann Geophys 27: 1019–1026. [CrossRef] [Google Scholar]
  • Papaioannou A, Mavromichalaki H, Gerontidou M, Souvatzoglou G, Nieminen P, Glover A. 2011. Solar particle event analysis using the Standard Radiation Environment Monitors: applying the neutron monitor’s experience. Astrophys Space Sci Trans 7(1): 1–5. [CrossRef] [Google Scholar]
  • Papaioannou A, Sandberg I, Anastasiadis A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hillgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. [CrossRef] [EDP Sciences] [Google Scholar]
  • Park J, Moon Y-J, Gopalswamy N. 2012. Dependence of solar proton events on their associated activities: Coronal mass ejection parameters. J Geophys Res (Space Phys) 117: A08108. DOI: 10.1029/2011JA017477. [Google Scholar]
  • Parker EN. 1958. Dynamics of the Interplanetary Gas and Magnetic Fields. ApJ 128: 664. DOI: 10.1086/146579. [Google Scholar]
  • Patsourakos S, Georgoulis MK, Vourlidas A, Nindos A, Sarris T, et al. 2016. The Major Geoeffective Solar Eruptions of 2012 March 7: Comprehensive Sun-to-Earth Analysis. ApJ 817: 14. DOI: 10.3847/0004-637X/817/1/14. [NASA ADS] [CrossRef] [Google Scholar]
  • Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5: 05001. DOI: 10.1029/2006SW000268 [NASA ADS] [CrossRef] [Google Scholar]
  • Reames DV. 1988. Bimodal abundances in the energetic particles of solar and interplanetary origin. ApJL 330: L71–L75. DOI: 10.1086/185207 [NASA ADS] [CrossRef] [Google Scholar]
  • Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. DOI: 10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
  • Robbrecht E, Berghmans D. 2004. Automated recognition of coronal mass ejections (CMEs) in near-real-time data. A&A 425: 1097–1106. DOI: 10.1051/0004-6361:20041302 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Rodríguez-Gasén R, Aran A, Sanahuja B, Jacobs C, Poedts S. 2011. Why should the latitude of the observer be considered when modeling gradual proton events. An insight using the concept of cobpoint. Adv Space Res 47: 2140–2151. DOI: 10.1016/j.asr.2010.03.021 [NASA ADS] [CrossRef] [Google Scholar]
  • Rodríguez-Gasén R, Aran A, Sanahuja B, Jacobs C, Poedts S. 2014. Variation of proton flux profiles with the observer’s latitude in simulated gradual SEP events. Sol Phys 289: 1745–1762. DOI: 10.1007/s11207-013-0442-1 [Google Scholar]
  • Rouillard A, Odstrcil D, Sheeley N, Tylka A, Vourlidas A, et al. 2011. Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. ApJ 735(1): 7. [Google Scholar]
  • Rust DM, Haggerty DK, Georgoulis MK, Sheeley NR, Wang Y-M, De Rosa ML, Schrijver CJ. 2008. On the solar origins of open magnetic fields in the heliosphere. ApJ 687: 635–645. DOI: 10.1086/592017. [CrossRef] [Google Scholar]
  • Sandberg I, Daglis IA, Anastasiadis A, Buhler P, Nieminen P, Evans H. 2012. Unfolding and Validation of SREM Fluxes. IEEE Trans Nucl Sci 59: 1105–1112. DOI: 10.1109/TNS.2012.2187216 [CrossRef] [Google Scholar]
  • Sandberg I, Jiggens P, Heynderickx D, Daglis IA. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41: 4435–4441. DOI: 10.1002/2014GL060469 [CrossRef] [Google Scholar]
  • Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, et al. 1995. The solar oscillations investigation – Michelson Doppler imager. Sol Phys 162: 129–188. DOI: 10.1007/BF00733429 [Google Scholar]
  • Schrijver CJ, De Rosa ML. 2003. Photospheric and heliospheric magnetic fields. Sol Phys: 212: 165–200. DOI: 10.1023/A:1022908504100. [NASA ADS] [CrossRef] [Google Scholar]
  • Simnett GM, Roelof EC, Haggerty DK. 2002. The acceleration and release of near-relativistic electrons by coronal mass ejections. ApJ 579: 854–862. DOI: 10.1086/342871 [NASA ADS] [CrossRef] [Google Scholar]
  • Smith CW, L’Heureux J, Ness NF, Acuña MH, Burlaga LF, Scheifele J. 1998. The ACE Magnetic Fields Experiment. Space Sci Rev 86: 613–632. DOI: 10.1023/A:1005092216668 [CrossRef] [Google Scholar]
  • Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The Advanced Composition Explorer. Space Sci Rev 86: 1–22. DOI: 10.1023/A:1005082526237 [NASA ADS] [CrossRef] [Google Scholar]
  • Subramanian P, Lara A, Borgazzi A. 2012. Can solar wind viscous drag account for coronal mass ejection deceleration? Geophys Res Lett 39: L19107. DOI: 10.1029/2012GL053625 [CrossRef] [Google Scholar]
  • Tousey R 1973. The solar corona. In Rycroft MJ, Runcorn SK, Eds. Space Research Conference, vol. 2, 713–730. [Google Scholar]
  • Trottet G, Samwel S, Klein K-L, de Wit TD, Miteva R. 2015. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol Phys 290(3): 819–839. [Google Scholar]
  • Tylka AJ, Cohen CMS, Dietrich WF, Lee MA, Maclennan CG, Mewaldt RA, Ng CK, Reames DV. 2005. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. ApJ 625: 474–495. DOI: 10.1086/429384 [Google Scholar]
  • Tylka AJ, Lee MA. 2006. A model for spectral and compositional variability at high energies in large, gradual solar particle events. ApJ 646: 1319–1334. DOI: 10.1086/505106 [Google Scholar]
  • Tziotziou K, Sandberg I, Anastasiadis A, Daglis IA, Nieminen P. 2010. Using a new set of space-borne particle monitors to investigate solar-terrestrial relations. A&A 514: A21. DOI: 10.1051/0004-6361/200912928 [CrossRef] [EDP Sciences] [Google Scholar]
  • Vainio R, Valtonen E, Heber B, Malandraki OE, Papaioannou A, et al. 2013. The first SEP Server event catalogue ~68-MeV solar proton events observed at 1 AU in 1996–2010. J Space Weather Space Clim 3(26): A12. DOI: 10.1051/swsc/2013030 [CrossRef] [EDP Sciences] [Google Scholar]
  • Vashenyuk EV, Balabin YV, Gvozdevsky BB. 2011. Features of relativistic solar proton spectra derived from ground level enhancement events (GLE) modeling. Astrophys Space Sci Trans 7(4): 459–463, DOI: 10.5194/astra-7-459-2011, http://www.astrophys-space-sci-trans.net/7/459/2011/. [CrossRef] [Google Scholar]
  • Vlahos L, Raoult A. 1995. Beam fragmentation and type III bursts. A&A 296: 844. [Google Scholar]
  • Vršnak B, Žic T, Falkenberg TV, Möstl C, Vennerstrom S, Vrbanec D. 2010. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. A&A 512: A43. DOI: 10.1051/0004-6361/200913482. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Wang Y, Xue X, Shen C, Ye P, Wang S, Zhang J. 2006. Impact of major coronal mass ejections on geospace during 2005 September 7–13. ApJ 646(1): 625. [CrossRef] [Google Scholar]
  • Warmuth A, Mann G, Aurass H. 2005. First Soft X-Ray observations of global coronal waves with the GOES Solar X-Ray Imager. ApJL 626: L121–L124. DOI: 10.1086/431756. [NASA ADS] [CrossRef] [Google Scholar]
  • Wenzel K, Marsden R, Page D, Smith E. 1992. The ULYSSES mission. A&AS 92: 207. [Google Scholar]
  • Winkler C, Courvoisier TJ-L, Di Cocco G, Gehrels N, Giménez A, et al. 2003. The INTEGRAL mission. A&A 411: L1–L6. DOI: 10.1051/0004-6361:20031288 [Google Scholar]
  • Woods TN, Eparvier FG, Hock R, Jones AR, Woodraska D, et al. 2012. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments. Sol Phys 275: 115–143. DOI: 10.1007/s11207-009-9487-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Yashiro S, Gopalswamy N, Michalek G, Cyr OCSt, Plunkett SP, Rich NB, Howard RA. 2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res (Space Phys) 109: A07105. DOI: 10.1029/2003JA010282. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.