Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
|
|
---|---|---|
Article Number | A39 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2018025 | |
Published online | 24 August 2018 |
- Akasofu SI, Fry CF. 1986. A first generation numerical geomagnetic storm prediction scheme. Planet Space Sci 34: 77–92. [NASA ADS] [CrossRef] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res, 105: 10465–10479, DOI: 10.1029/1999ja000262. [CrossRef] [Google Scholar]
- Arge CN, Luhmann JG, Odstrcil D, Schrijver CJ, Li Y. 2004. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J Atmos Sol Terr Phys 66 (15–16): 1295–1309. [Google Scholar]
- Belcher JW, Davis LJ. 1971. Large-amplitude Alfvén waves in the interplanetary medium II. J Geophys Res 76(16): 3534–3563. [Google Scholar]
- Boursier Y, Lamy PL, Llebaria A, Goudail F, Robelus S. 2009. The ARTEMIS catalog of LASCO coronal mass ejections. Sol Phys 257(1), 125–147. [NASA ADS] [CrossRef] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162 (1–2): 357–402. [CrossRef] [Google Scholar]
- Byrne JP. 2015. Investigating the kinematics of coronal mass ejections with the automated CORIMP catalog. J Space Weather Space Clim 5: A19. [CrossRef] [EDP Sciences] [Google Scholar]
- Davis CJ, Davies JA, Lockwood M, Rouillard AP, Eyles CJ, RA Harrison. 2009. Stereoscopic imaging of an earth-impacting solar coronal mass ejection: a major milestone for the stereo mission. Geophys Res Lett 36(8): 134–150. [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162 (1–2), 1–37, DOI: 10.1007/BF00733425. [Google Scholar]
- Duda RO, Hart PE. 1972. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1): 11–15, DOI: 10.1145/361237.361242. [Google Scholar]
- Fisher RR, Munro RH. 1984. Coronal transient geometry. I – The flare-associated event of 1981 March 25. Astrophys J 280: 428–439, DOI: 10.1086/162009. [NASA ADS] [CrossRef] [Google Scholar]
- Fry CD, Sun W, Deehr CS, Dryer M, Smith Z, et al. 2001. Improvements to the HAF solar wind model for space weather predictions. J. Geophys Res 106(A10): 20985–21001, DOI: 10.1029/2000JA000220. [CrossRef] [Google Scholar]
- Fry CD, Dryer M, Smith Z, Sun W, Deehr CS, Akasofu SI. 2003. Forecasting solar wind structures and shock arrival times using an ensemble of models. J Geophys Res 108(A2): 1070–DOI: 10.1029/2002JA009474. [Google Scholar]
- Gopalswamy N, Yashiro S, Akiyama S, Mäkelä P, Xie H, et al. 2008. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann Geophys 26(10): 3033–3047, DOI: 10.5194/angeo-26-3033-2008. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, et al. 2009. The SOHO/LASCO CME Catalog. Earth, Moon, and Planets 104 (1–4): 295–313, DOI: 10.1007/s11038-008-9282-7. [Google Scholar]
- Gonzalez WD, Tsurutani BT, Clúa de Gonzalez AL. 1999. Interplanetary origin of geomagnetic storms. Space Sci Rev 88 (3–4): 529–562, DOI: 10.1023/A:1005160129098. [NASA ADS] [CrossRef] [Google Scholar]
- Gosling JT, Hildner E, MacQueen RM, Munro RH, Poland AI, Ross CL. 1974. Mass ejections from the sun: a view from Skylab. J Geophys Res 79(31): 4581–4587, DOI: 10.1029/JA079i031p04581. [NASA ADS] [CrossRef] [Google Scholar]
- Gosling JT. 1990. Coronal mass ejections and magnetic flux ropes in interplanetary space. In Physics of Magnetic Flux Ropes, CT Russell, ER Priest, LC Lee (Eds.) American Geophysical Union, 58: 343–364, DOI: 10.1029/GM058p0343. [Google Scholar]
- Gressl C, Veronig AM, Temmer M, Odstrčil D, Linker JA, et al. 2013. Comparative study of MHD modeling of the background solar wind. Sol Phys 289: 1783–1801, DOI: 10.1007/s11207-013-0421-6. [Google Scholar]
- Hakamada K, Akasofu SI. 1982. Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms. Space Sci Rev 31(1): 3–70, DOI: 10.1007/BF00349000. [NASA ADS] [CrossRef] [Google Scholar]
- Hakamada K. 1995. A simple method to compute spherical harmonic coefficients for the potential model of the coronal magnetic field. Sol Phys 159(1): 89–96, DOI: 10.1007/BF00733033. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Hubbard RP, Kennedy JR, Leibacher JW, et al. 1996. The global oscillation network group (GONG) project, Science 272(5266), 1284–1286, DOI: 10.1126/science.272.5266.1284. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Horne RB, Glauert SA, Meredith NP, Boscher D, Maget V, et al. 2013. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST, Space Weather 11(4): 169–186, DOI: 10.1002/swe.20023. [CrossRef] [Google Scholar]
- Linker JA, Mikic Z, Biesecker DA, Forsyth RJ, Gibson SE, et al. 1999. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J Geophys Res: Space Phys 104(A5): 9809–9830, DOI: 10.1029/1998JA900159. [CrossRef] [Google Scholar]
- Liu SQ, Gong JC. 2015. Operational space weather services in National Space Science Center of Chinese Academy of Sciences. Space Weather 13(10): 599–605, DOI: 10.1002/2015SW001298. [CrossRef] [Google Scholar]
- MacNeice P. 2009. Validation of community models: Identifying events in space weather model timelines. Space Weather 7: S06004, DOI: 10.1029/2009SW000463. [Google Scholar]
- MacAlester MH, Murtagh W. 2014. Extreme space weather impact: An emergency management perspective. Space Weather 12(8): 530–537, DOI: 10.1002/2014SW001095. [CrossRef] [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastter L, et al. 2015. Ensemble modeling of CMEs Using the WSA–ENLIL+Cone Model. Sol Phys 290, 1775–1814, DOI: 10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- Morgan H, Byrne JP, Habbal SR. 2012. Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys J. 752(2): 144, DOI: 10.1088/0004-637X/752/2/144. [NASA ADS] [CrossRef] [Google Scholar]
- Norquist DC, Meeks WC. 2010. A comparative verification of forecasts from two operational solar wind models. Space Weather 8: S12005, DOI: 10.1029/2010SW000598. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3–D solar wind structure. Adv. Space Res. 32(4): 497–506, DOI: 10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ, Linker JA, Riley P, Lionello R, et al. 2004. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes, J Atmos Sol-Terr Phys 66(15): 1311–1320, DOI: 10.1016/j.jastp.2004.04.007. [Google Scholar]
- Olmedo O, Zhang J, Wechsler H, Poland A, Borne K. 2008. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol Phys 248(2): 485–499, DOI: 10.1007/s11207-007-9104-5. [Google Scholar]
- Owens MJ, Arge CN, Spence HE, Pembroke A. 2005. An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model. J Geophys Res 110(A12): A12105, DOI: 10.1029/2005JA011343. [CrossRef] [Google Scholar]
- Owens MJ, Spence HE, McGregor S, Hughes WJ, Quinn JM, et al. 2008. Metrics for solar wind prediction models: comparison of empirical hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S0–8001, DOI: 10.1029/2007sw000380. [Google Scholar]
- Parsons A, Biesecker D, Odstrcil D, Millward G, Hill S, et al. 2011. Wang–Sheeley–Arge–Enlil Cone model transitions to operations. Space Weather 9: S0–3004, DOI: 10.1029/2011sw000663. [Google Scholar]
- Pizzo VJ. 1985. Interplanetary shocks on the large scale: A retrospective on the last decade’s theoretical efforts. In Collisionless shocks in the heliosphere: Reviews of current research, R.G. Stone, B.T. Tsurutani (Eds.), Geophysical Monograph Series, 35(35): 51–68, DOI: 10.1029/GM035p0051. [CrossRef] [Google Scholar]
- Richardson IG, Cliver EW, Cane HV. 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Res. Lett. 28: 2569–2572, DOI: 10.1029/2001GL013052. [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Sol Phys 264(1): 189–237, DOI: 10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikić Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res 106: 15889–15901, DOI: 10.1029/2000ja000121. [Google Scholar]
- Riley P, Linker JA, Arge CN. 2015. On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13, 154–169, DOI: 10.1002/2014sw001144. [NASA ADS] [CrossRef] [Google Scholar]
- Robbrecht E, Berghmans D, Van der Linden RAM. 2009. Automated Lasco CME Catalog For solar cycle 23: Are CMEs scale invariant? Astrophys J 691: 1222–1234, DOI: 10.1088/0004-637x/691/2/1222. [CrossRef] [Google Scholar]
- Sheeley NRJ, Asbridge JR, Bame SJ, Harvey JW. 1977. A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle. Sol Phys 52(2): 485–495, DOI: 10.1007/BF00149663. [CrossRef] [Google Scholar]
- Sheeley NRJ, Walters JH, Wang YM, Howard RA. 1999. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J Geophys Res 104(A11): 24739–24767, DOI: 10.1029/1999JA900308. [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6: 442–455, DOI: 10.1007/bf00146478. [NASA ADS] [CrossRef] [Google Scholar]
- Schatten KH. 1971. Current sheet magnetic model for the solar corona. Cosmic Electrodyn 2: 232–245. [Google Scholar]
- Schwenn R. 2000. Heliospheric 3d structure and CME propagation as seen from SOHO: recent lessons for space weather predictions. Adv Space Res 26(1): 43–53, DOI: 10.1016/S0273-1177(99)01025-X. [CrossRef] [Google Scholar]
- Schwenn R, dal Lago A, Huttunen E, Gonzalez WD. 2005. The association of coronal mass ejections with their effects near the Earth. Ann Geophys 23(3): 1033–1059, DOI: 10.5194/angeo-23-1033-2005. [Google Scholar]
- Smith EJ, Wolfe JF. 1976. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys Res Lett 3(3): 137–140, DOI: 10.1029/GL003i003p00137. [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, et al. 1998. The advanced composition explorer. Space Sci Rev 86 (1–4): 1–22, DOI: 10.1023/A:1005082526237. [NASA ADS] [CrossRef] [Google Scholar]
- Sun W, Akasofu SI, Smith ZK, Dryer M. 1985. Calibration of the kinematic method of studying solar wind disturbances on the basis of a one-dimensional MHD solution, a simulation study of the heliosphere disturbances between 22 November, 6 December. Planet Space Sci 33(8): 933–943, DOI: 10.1016/0032-0633(85)90107-2. [CrossRef] [Google Scholar]
- Thernisien AFR, Howard RA, Vourlidas A. 2006. Modeling of flux rope coronal mass ejections. Astrophys J 652(1): 763, DOI: 10.1086/508254. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Tang F, Arballo JK, et al. 1995. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys Res 100(A11): 21717–21733, DOI: 10.1029/95JA01476. [NASA ADS] [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD. 1997. The interplanetary causes of magnetic storms: A review. In Magnetic Storms, BT Tsurutani, WD Gonzalez, Y Kamide, JK Arballo (Eds.), AGU 98: 77–89, DOI: 10.1029/GM098p0077. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res 111(A7): A07S01, DOI: 10.1029/2005JA011273. [Google Scholar]
- Wang CB, Chao JK, Cheng HH, Li Y, Wang S, Sun W, Akasofu SI. 2002. Prediction of the IMF Bz using 3-D kinematic code. Chinese J Geophys 45(6): 749–802, DOI: 10.1002/cjg2.294. [Google Scholar]
- Wang YM, Sheeley NRJ. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J 355: 726, DOI: 10.1086/168805. [NASA ADS] [CrossRef] [Google Scholar]
- Wang YM, Sheeley NRJ. 1991. Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophys J 372: L45–L48, DOI: 10.1086/186020. [NASA ADS] [CrossRef] [Google Scholar]
- Xie H, Ofman L, Lawrence G. 2004. Cone model for halo CMEs: Application to space weather forecasting. J Geophys Res, 109(A3): A03109, DOI: 10.1029/2003JA010226. [Google Scholar]
- Xue XH, Wang CB, Dou XK. 2005. An ice-cream cone model for coronal mass ejections. J Geophys Res 110(A8): A08–103, DOI: 10.1029/2004JA010698. [Google Scholar]
- Yamashita M, Tokumaru M, Kojima M. 2003. Radial dependence of propagation speed of solar wind disturbance. SOLAR WIND TEN: Proceedings of the Tenth International Solar Wind Conference. AIP Conference Proceedings 679: 754–757, DOI: 10.1063/1.1618702. [CrossRef] [Google Scholar]
- Zhao X, Hoeksema JT. 1994. A coronal magnetic field model with horizontal volume and sheet currents. Solar Phys 151(1): 91–105, DOI: 10.1007/BF00654084. [Google Scholar]
- Zhao X, Hoeksema JT. 1995. Prediction of the interplanetary magnetic field strength. J Geophys Res 100(A1): 19–33, DOI: 10.1029/94JA02266. [CrossRef] [Google Scholar]
- Zhao XP, Plunkett SP, Liu W. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res 107(A8): 1223, DOI: 10.1029/2001JA009143. [Google Scholar]
- Zhuan B, Wang YM, Shen CL, Liu SQ, Wang JJ, et al. 2017. The significance of the influence of the CME deflection in interplanetary space on the CME arrival at Earth, Astrophys J 845(2): 1–17, DOI: 10.3847/1538-4357/aa7fc0. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.