Open Access
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A41
Number of page(s) 14
Published online 03 October 2018
  • Amm O, Goodman ML. 1996. Comment on: A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm's law boundary condition in global magnetohydrodynamic simulations. Author’s reply. Ann Geophys 14: 773–775. [Google Scholar]
  • Bennett L, Kivelson MG, Khurana KK, Frank LA, Paterson WR. 1997. A model of the Earth’s distant bow shock. J Geophys Res 102: 26927–26941. DOI: 10.1029/97JA01906. [CrossRef] [Google Scholar]
  • Binsack JH, Vasyliunas VM. 1968. Simultaneous IMP 2 and OGO 1 observations of bow shock compression. J Geophys Res 73: 429–433. DOI: 10.1029/JA073i001p00429. [CrossRef] [Google Scholar]
  • Boardsen SA, Eastman TE, Sotirelis T, Green JL. 2000. An empirical model of the high-latitude magnetopause. J Geophys Res 105: 23193–23219. DOI: 10.1029/1998JA000143. [CrossRef] [Google Scholar]
  • Cairns IH, Lyon J. 1995. MHD simulations of Earth’s bow shock at low Mach numbers: Standoff distances. J Geophys Res 100: 17173–17180. DOI: 10.1029/95JA00993. [CrossRef] [Google Scholar]
  • Chao JK, Wu DJ, Lin CH, Yang YH, Wang XY, Kessel M, Chen SH, Lepping RP. 2002. Models for the size and shape of the Earth’s magnetopause and bow shock. Cospar Colloquia series 12: 127–135. [CrossRef] [Google Scholar]
  • Chapman JF, Cairns IH, Lyon JG, Boshuizen CR. 2004. MHD simulations of Earth’s bow shock: Interplanetary magnetic field orientation effects on shape and position. J Geophys Res 109: 215. DOI: 10.1029/2003JA010235. [Google Scholar]
  • Chapman JF, Cairns IH. 2003. Three-dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number. J Geophys Res 108: A051174. DOI: 10.1029/2002JA009569. [Google Scholar]
  • Chapman S, Ferraro VC. 1930. A new theory of magnetic storms. Nature 126: 129–130. DOI: 10.1038/126129a0. [NASA ADS] [CrossRef] [Google Scholar]
  • De Keyser J, Dunlop MW, Owen CJ, Sonnerup BUÖ, Haaland SE, Vaivads A, Paschmann G, Lundin R, Rezeau L. 2005. Magnetopause and boundary layer. Outer magnetospheric boundaries: Cluster results. Space Sci Rev 118: 231–320. DOI: 10.1007/1-4020-4582-4_9. [CrossRef] [Google Scholar]
  • De Zeeuw DL, Sazykin S, Wolf RA, Gombosi TI, Ridley AJ, Toth G. 2004. Coupling of a global MHD code and an inner magnetospheric model: Initial results. 109. DOI: 10.1029/2003JA010366. [Google Scholar]
  • Dmitriev A, Suvorova A, Chao JK. 2011. A predictive model of geosynchronous magnetopause crossings. J Geophys Res 116. DOI: 10.1029/2010JA016208. [CrossRef] [Google Scholar]
  • Elsen RK, Winglee RM. 1997. The average shape of the magnetopause: A comparison of three-dimensional global MHD and empirical models. J Geophys Res 102: 4799–4819. DOI: 10.1029/96JA03518. [CrossRef] [Google Scholar]
  • Fairfield DH, Iver HC, Desch MD, Szabo A, Lazarus AJ, Aellig MR. 2001. The location of low Mach number bow shocks at Earth. J Geophys Res 106: 25361–25376. DOI: 10.1029/2000JA000252. [Google Scholar]
  • Fairfield DH. 1971. Average and unusual locations of the Earth’s magnetopause and bow shock. J Geophys Res 76: 6700–6716. DOI: 10.1029/JA076i028p06700. [CrossRef] [Google Scholar]
  • Farris MH, Russell CT. 1994. Determining the standoff distance of the bow shock: Mach number dependence and use of models. J Geophys Res 99: 17681. DOI: 10.1029/94JA01020. [Google Scholar]
  • Farris MH, Petrinec SM, Russell CT. 1991. The thickness of the magnetosheath: Constraints on the polytropic index. Geophys Res Lett 18: 1821–1824. DOI: 10.1029/91GL02090. [Google Scholar]
  • Feng XS, Zhou YF, Wu ST. 2007. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys J 655: 1110. [CrossRef] [Google Scholar]
  • Feng XS, Yang LP, Xiang CQ, Wu ST, Zhou YF, Zhong DK. 2010. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723: 300. [NASA ADS] [CrossRef] [Google Scholar]
  • Feng XS, Zhang S, Xiang CQ, Yang LP, Jiang CW, Wu ST. 2011. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys J 734: 50. [Google Scholar]
  • Feng XS, Yang LP, Xiang CQ, Jiang CW, Ma XP, Wu ST, Zhong DK, Zhou YF. 2012. Validation of the 3D AMR SIP–CESE solar wind model for four carrington rotations. Solar Phys 279: 207–229. [Google Scholar]
  • Feng XS, Xiang CQ, Zhong DK, Zhou YF, Yang LP, Ma XP. 2014. SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes. Comput Phys Comm 185: 1965–1980. DOI: 10.1016/j.cpc.2014.03.027. [CrossRef] [Google Scholar]
  • Formisano V. 1979. Orientation and shape of the Earth’s bow shock in three dimensions. Planet Space Sci 27: 1151–1161. DOI: 10.1016/0032-0633(79)90135-1. [CrossRef] [Google Scholar]
  • Gombosi TI, DeZeeuw DL, Groth CPT, Powell KG, Song P. 1998. The length of the magnetotail for northward IMF: Results of 3D MHD simulations. Phys Space Plasmas 15: 121–128. [Google Scholar]
  • Holzer RE, Slavin JA. 1978. Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere. J Geophys Res 83: 3831–3839. DOI: 10.1029/JA083iA08p03831. [CrossRef] [Google Scholar]
  • Hu YQ, Guo XC, Li GQ, Wang C, Huang ZH. 2005. Oscillation of quasi-steady Earth’s magnetosphere. Chin Phys Lett 22: 2723. [CrossRef] [Google Scholar]
  • Jelínek K, Nĕmeček Z, Šafránková J. 2012. A new approach to magnetopause and bow shock modeling based on automated region identification. J Geophys Res 117: A05208. DOI: 10.1029/2011JA017252. [Google Scholar]
  • Jeřáb M, Nĕmeček Z, Šafránková J, Jelnek K, Mĕrka J. 2005. Improved bow shock model with dependence on the IMF strength. Planet Space Sci 53: 85–93. DOI: 10.1016/j.pss.2004.09.032. [CrossRef] [Google Scholar]
  • Jiang CW, Feng XS, Zhang J, Zhong DK. 2010. AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates. Solar Phys 267: 463–491. DOI: 10.1007/s11207-010-9649-6. [CrossRef] [Google Scholar]
  • Kabin K. 2001. A note on the compression ratio in MHD shocks. J Plasma Phys 66: 259–274. DOI: 10.1017/S0022377801001295. [CrossRef] [Google Scholar]
  • King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res, 110: A02104. DOI: 10.1029/2004JA010649. [Google Scholar]
  • Kuznetsov SN, Suvorova AV. 1998. An empirical model of the magnetopause for broad ranges of solar wind pressure and Bz IMF. In: Polar cap boundary phenomena, pp. 51–61. DOI: 10.1007/978-94-011-5214-3_5. [Google Scholar]
  • Lin RL, Zhang XX, Liu SQ, Wang YL, Gong JC. 2010. A three-dimensional asymmetric magnetopause model. J Geophys Res 115: 4207. DOI: 10.1029/2009JA014235. [Google Scholar]
  • Lockwood M, Wild MN. 1993. On the quasi-periodic nature of magnetopause flux transfer events. J Geophys Res 98: 5935–5940. DOI: 10.1029/92JA02375. [CrossRef] [Google Scholar]
  • Merka J, Szabo A, Narock TW, King JH, Paularena KI, Richardson JD. 2003. A comparison of IMP 8 observed bow shock positions with model predictions. J Geophys Res 108: 1077. DOI: 10.1029/2002JA009384. [Google Scholar]
  • Merka J, Szabo A, Slavin JA, Peredo M. 2005. Three-dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation. J Geophys Res 110: 4202. DOI: 10.1029/2004JA010944. [CrossRef] [Google Scholar]
  • Merkin VG, Lyon JG. 2010. Effects of the low-latitude ionospheric boundary condition on the global magnetosphere. J Geophys Res 115: A10202. DOI: 10.1029/2010JA015461. [CrossRef] [Google Scholar]
  • Nĕmeček Z, Šafránková J, Lopez RE, Dušík Š, Nouzák L, Přech L, Šimůnek J, Shue JH. 2016. Solar cycle variations of magnetopause locations. Adv Space Res 58: 240–248. DOI: 10.1016/j.asr.2015.10.012. [CrossRef] [Google Scholar]
  • Ogino T. 1986. A three-dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere: The generation of field-aligned currents. J Geophys Res 91: 6791–6806. [CrossRef] [Google Scholar]
  • Peredo M, Slavin JA, Mazur E, Curtis SA. 1995. Three-dimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J Geophys Res 100: 7907–7916. DOI: 10.1029/94JA02545. [NASA ADS] [CrossRef] [Google Scholar]
  • Petrinec SM, Russell CT. 1993. An empirical model of the size and shape of the near-Earth magnetotail. Geophys Res Lett 20: 2695–2698. DOI: 10.1029/93GL02847. [CrossRef] [Google Scholar]
  • Petrinec SM, Russell CT. 1996. Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle. J Geophys Res 101: 137–152. DOI: 10.1029/95JA02834. [NASA ADS] [CrossRef] [Google Scholar]
  • Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL. 1999. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154: 284–309. DOI:10.1006/jcph.1999.6299 . [NASA ADS] [CrossRef] [Google Scholar]
  • Raeder J. 2003. Global magnetohydrodynamics – A tutorial. In: Space Plasma Simulation, 212–246, DOI: 10.1007/3-540-36530-3_11. [CrossRef] [Google Scholar]
  • Raeder J, Berchem J, Ashour-Abdalla M. 1998. The geospace environment modeling grand challenge: Results from a global geospace circulation model. J Geophys Res 103: 14787–14797. DOI: 10.1029/98JA00014 [Google Scholar]
  • Roelof EC, Sibeck DG. 1993. Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J Geophys Res 98: 21421–21450. DOI: 10.1029/93JA02362. [Google Scholar]
  • Shue JH, Chao JK, Fu HC, Russell CT, Song P, Khurana KK, Singer HJ. 1997. A new functional form to study the solar wind control of the magnetopause size and shape. J Geophys Res 102: 9497–9511. DOI: 10.1029/97JA00196. [NASA ADS] [CrossRef] [Google Scholar]
  • Shue JH, Song P, Russell CT, Steinberg JT, Chao JK, Zastenker G, Vaisberg OL, Kokubun S, Singer HJ, Detman TR, Kawano H. 1998. Magnetopause location under extreme solar wind conditions. J Geophys Res 103: 17691–17700. DOI: 10.1029/98JA01103 [NASA ADS] [CrossRef] [Google Scholar]
  • Sibeck DG, Lopez RE, Roelof EC. 1991. Solar wind control of the magnetopause shape, location, and motion. J Geophys Res 96: 5489–5495. DOI: 10.1029/90JA02464. [CrossRef] [Google Scholar]
  • Slavin JA, Holzer RE. 1981. Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. J Geophys Res 86: 11401–11418. DOI: 10.1029/JA086iA13p11401. [Google Scholar]
  • Slavin JA, Szabo A, Peredo M, Lepping RP, Fitzenreiter RJ, Ogilvie KW, Owen CJ, Steinberg JT. 1996. Near-simultaneous bow shock crossings by WIND and IMP 8 on December 1, 1994. Geophys Res Lett 23: 1207–1210. DOI: 10.1029/96GL01351. [CrossRef] [Google Scholar]
  • Song P, DeZeeuw DL, Gombosi TI, Groth CPT, Powell KG. 1999. A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. J Geophys Res 104: 28361–28378. DOI: 10.1029/1999JA900378. [CrossRef] [Google Scholar]
  • Spreiter JR, Stahara SS. 1985. Magnetohydrodynamic and gasdynamic theories for planetary bow waves. American Geophysical Union Geophysical Monograph, Washington DC 35: 85–107. DOI: 10.1029/GM035p0085. [Google Scholar]
  • Sterck HD, Low BC, Poedts S. 1998. Complex magnetohydrodynamic bow shock topology in field-aligned low-flow around a perfectly conducting cylinder. Phys Plasmas 5: 4015–4027. DOI: 10.1063/1.873124. [CrossRef] [Google Scholar]
  • Tanaka T. 1994. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J Comput Phys 111: 381–389. [Google Scholar]
  • Usadi A, Kageyama A, Watanabe K, Sato T. 1993. A global simulation of the magnetosphere with a long tail: Southward and northward interplanetary magnetic field. J Geophys Res 98: 7503–7517. DOI: 10.1029/92JA02078. [NASA ADS] [CrossRef] [Google Scholar]
  • Verigin M, Slavin J, Szabo A, Kotova G, Gombosi TI. 2003. Planetary bow shocks: Asymptotic MHD Mach cones. Earth Planet Space 55: 33–38. [CrossRef] [Google Scholar]
  • Walker RJ, Richard RL, Ogino T, Ashour-Abdalla M. 1995. Solar wind entry into the magnetosphere when the interplanetary magnetic field is southward. Phys Space Plasmas 561. [Google Scholar]
  • Wang J, Feng XS, Du AM, Ge YS. 2014. Modeling the interaction between the solar wind and Saturn’s magnetosphere by the AMR-CESE-MHD method. J Geophys Res 119: 9919–9930. DOI: 10.1002/2014JA020420. [CrossRef] [Google Scholar]
  • Wang J, Du AM, Zhang Y, Zhang TL, Ge YS. 2015. Modeling the Earth’s magnetosphere under the influence of solar wind with due northward IMF by the AMR-CESE-MHD model. Sci China Earth Sci 58: 1235–1242. [CrossRef] [Google Scholar]
  • Wang Y, Sibeck DG, Merka J, Boardsen SA, Karimabadi H, Sipes TB, Šafránková J, Jelnek K, Lin R. 2013. A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. J Geophys Res 118: 2173–2184. DOI: 10.1002/jgra.50226. [CrossRef] [Google Scholar]
  • Willis DM. 1975. The microstructure of the magnetopause. Geophys J 41: 355–389. DOI: 10.1111/j.1365-246X.1975.tb01621.x. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.