Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Scientific Advances from the European Commission H2020 projects on Space Weather
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2020029 | |
Published online | 05 August 2020 |
- Aa E, Zou S, Ridley A, Zhang S, Coster AJ, Erickson EJ, Liu S, Ren J. 2019. Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather 17: 1–14. https://doi.org/10.1029/2018SW002101. [CrossRef] [Google Scholar]
- Altadill D, Segarra A, Blanch E, Juan JM, Paznukhov VV, Buresova D, Galkin I, Reinisch BW, Belehaki A. 2020. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: first results. J Space Weather Space Clim 10(2): 1–11. https://doi.org/10.1051/swsc/2019042. [CrossRef] [Google Scholar]
- Amm O. 1997. Ionospheric elementary current systems in spherical coordinates and their application. J Geomag Geoelectr 49(7): 947–955. https://doi.org/10.5636/jgg.49.947. [CrossRef] [Google Scholar]
- Amm O, Viljanen A. 1999. Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems. Earth Planets Space 51: 431–440. https://doi.org/10.1186/BF03352247. [CrossRef] [Google Scholar]
- Belehaki A, Galkin I, Borries C, Pintor P, Altadill D, et al. 2019. TechTIDE: Warning and mitigation technologies for travelling ionospheric disturbances effects. In: Berbers Y, Zwaenepoel W (Eds.), URSI Asia-Pacific Radio Science Conference, 1. URSI. https://doi.org/10.23919/URSIAP-RASC.2019.8738350. [Google Scholar]
- Berdermann J, Kriegel M, Banyś D, Heymann F, Hoque MM, Wilken V, Borries C, Heßelbarth A, Jakowski N. 2018. Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather 16(10): 1604–1615. https://doi.org/10.1029/2018SW001933. [NASA ADS] [CrossRef] [Google Scholar]
- Borries C, Berdermann J, Jakowski N, Wilken V. 2015. Ionospheric storms – A challenge for empirical forecast of the total electron content. J Geophys Res Space Phys 120(4): 3175–3186. https://doi.org/10.1002/2015JA020988. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Kauristie K, Amm O, Mielich J, Kouba D. 2017. On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003. J Geophys Res Space Phys 122(1): 1199–1211. https://doi.org/10.1002/2016JA023050. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophys 27: 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Bowman GG, Mortimer IK. 2011. Some aspects of large-scale travelling ionospheric disturbances which originate at conjugate locations in auroral zones, cross the equator and sometimes encircle the Earth. Ann Geophys 29(12): 2203–2210. https://doi.org/10.5194/angeo-29-2203-2011. [CrossRef] [Google Scholar]
- Cesaroni C, Spogli L, Alfonsi L, Francesci GD, Ciraolo L, Monico JFG, Scotto C, Romano V, Aquino M, Bougard B. 2015. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar minimum. J Space Weather Space Clim 5(A36): 1–11. https://doi.org/10.1051/swsc/2015038. [CrossRef] [Google Scholar]
- Chen G, Zhou C, Liu Y, Zhao J, Tang Q, Wang X, Zhao Z. 2019. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planets Space 71(52): 1–14. https://doi.org/10.1186/s40623-019-1031-9. [CrossRef] [Google Scholar]
- Cherniak I, Krankowski A, Zakharenkova I. 2018. ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solutions 22(69): 1–12. https://doi.org/10.1007/s10291-018-0730-1. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2015. Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm. Earth Planets Space 67(151): 1–12. https://doi.org/10.1186/s40623-015-0316-x. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2018. Large-scale traveling ionospheric disturbances origin and propagation: Case study of the December 2015 geomagnetic storm. Space Weather 16(9): 1377–1395. https://doi.org/10.1029/2018SW001869. [CrossRef] [Google Scholar]
- Chum J, Podolská K. 2018. 3D Analysis of GW propagation in the ionosphere. Geophys Res Lett 45(21): 11562–11571. https://doi.org/10.1029/2018GL079695. [CrossRef] [Google Scholar]
- Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM. 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2): 111–120. https://doi.org/10.1007/s00190-006-0093-1. [CrossRef] [Google Scholar]
- Curto JJ, Marsal S, Blanch E, Altadill D. 2018. Analysis of the Solar Flare Effects of 6 September 2017 in the Ionosphere and in the Earth’s Magnetic Field Using Spherical Elementary Current Systems. Space Weather 16(11): 1709–1720. https://doi.org/10.1029/2018SW001927. [CrossRef] [Google Scholar]
- Dimmock AP, Rosenqvist L, Hall J-O, Viljanen A, Yordanova E, Honkonen I, André M, Sjöberg EC. 2019. The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather 17(7): https://doi.org/10.1029/2018SW002132. [Google Scholar]
- Erickson GM, Spiro RW, Wolf RA. 1991. The physics of the Harang discontinuity. J Geophys Res Space Phys 96(A2): 1633–1645. https://doi.org/10.1029/90JA02344. [CrossRef] [Google Scholar]
- Figueiredo CAOB, Wrasse CM, Takahashi H, Otsuka Y, Shiokawa K, Barros D. 2017. Large-scale traveling ionospheric disturbances observed by GPS dTEC maps over North and South America on Saint Patrick’s Day storm in 2015. J Geophys Res Space Phys 122: 4755–4763. https://doi.org/10.1002/2016JA023417. [CrossRef] [Google Scholar]
- Foster JC, Vo HB. 2002. Average characteristics and activity dependence of the subauroral polarization stream. J Geophys Res Space Phys 107(A12): SIA 16–1–SIA 16–10. https://doi.org/10.1029/2002JA009409. [CrossRef] [Google Scholar]
- Galkin I, Reinisch B. 2008. The new ARTIST 5 for all digisondes. Ionosonde Network Advisory Group Bulletin 69: 1–8. [Google Scholar]
- Gamache RR, Reinisch BW. 1990. Ionospheric Characteristics for Archiving at the World Data Centers. Tech. rep. Center for Atmospheric Research, University of Lowell. [Google Scholar]
- Gonzales WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm? J Geophys Res 99(A4): 5771–5792. https://doi.org/10.1029/93JA02867. [NASA ADS] [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, Yizengaw E, Yamazaki Y, Seemala G. 2016. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale. Geophys Res Lett 43(13): 6678–6686. https://doi.org/10.1002/2016GL069740. [CrossRef] [Google Scholar]
- He M, Vogt J, Lühr H, Sorbalo E. 2014. Local time resolved dynamics of field-aligned currents and their response to solar wind variability. J Geophys Res Space Phys 119(7): 5305–5315. https://doi.org/10.1002/2014JA019776. [CrossRef] [Google Scholar]
- Heilig B, Lühr H. 2013. New plasmasphere model derived from CHAMP field-aligned current signatures. Ann Geophys 31(3): 529–539. https://doi.org/10.5194/angeo-31-529-2013. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hoque MM, Jakowski N. 2012. Ionospheric propagation effects on GNSS signals and new correction approaches. In Jin S. (ed.),Global Navigation Satellite Systems, chap. 16, IntechOpen, Rijeka. https://doi.org/10.5772/30090. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20(2): 239–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Jacobsen KS. 2014. The impact of different sampling rates and calculation time intervals on ROTI values. J Space Weather Space Clim 4(A33): 1–9. https://doi.org/10.1051/swsc/2014031. [Google Scholar]
- Jacobsen KS, Dähnn M. 2014. Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. J Space Weather Space Clim 4(A27): 1–10. https://doi.org/10.1051/swsc/2014024. [Google Scholar]
- Jakowski N. 1996. TEC monitoring by using satellite positioning systems. In: Modern Ionospheric Science, 1st edn. Kohl H, Rüster R, Schlegel K (Eds.), European Geophysical Society. pp. 371–390. [Google Scholar]
- Jin H, Zou S, Chen G, Yan C, Zhang S, Yang G. 2018. Formation and evolution of low-latitude F region field-aligned irregularities during the 7–8 September 2017 Storm: Hainan coherent scatter phased array radar and digisonde observations. Space Weather 16(6): 648–659. https://doi.org/10.1029/2018SW001865. [CrossRef] [Google Scholar]
- Juan JM, Aragon-Angel A, Sanz J, González-Casado G, Rovira-Garcia A. 2017. A method for scintillation characterization using geodetic receivers operating at 1 Hz. J Geod 91: 1383–1397. https://doi.org/10.1007/s00190-017-1031-0. [CrossRef] [Google Scholar]
- Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Perez RO. 2018. AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8(A14): 1–11. https://doi.org/10.1051/swsc/2017044. [Google Scholar]
- Kelley MC. 2011. On the origin of mesoscale TIDs at midlatitudes. Ann Geophys 29(2): 361–366. https://doi.org/10.5194/angeo-29-361-2011. [CrossRef] [Google Scholar]
- Kotake N, Otsuka Y, Ogawa T, Tsugawa T, Saito A. 2007. Statistical study of medium-scale traveling ionospheric disturances observed with the GPS networks in Southern California. Earth Planets Space 59: 95–102. https://doi.org/10.1186/BF03352681. [CrossRef] [Google Scholar]
- Kotake N, Otsuka Y, Tsugawa T, Ogawa T, Saito A. 2006. Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances. Geophys Res 111(A04): 306. https://doi.org/10.1029/2005JA011418. [CrossRef] [Google Scholar]
- Lühr H, Warnecke JF, Rother MKA. 1996. An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements: a diagnostic tool applied to Freja satellite data. IEEE Trans Geosci Remote Sens 34(6): 1369–1376. https://doi.org/10.1109/36.544560. [CrossRef] [Google Scholar]
- Liu J, Zhang D-H, Coster AJ, Zhang S-R, Ma G-Y, Hao Y-Q, Xiao Z. 2019. A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick’s Day geomagnetic storm. Ann Geophys 37: 673–687. https://doi.org/10.5194/angeo-37-673-2019. [CrossRef] [Google Scholar]
- Mavromichalaki H, Gerontidou M, Paschalis P, Paouris E, Tezari A, Sgouropoulos C, Crosby N, Dierckxsens M. 2018. Real-time detection of the ground level enhancement on 10 September 2017 by A.Ne.Mo.S.: System report. Space Weather 16(11): 1797–1805. https://doi.org/10.1029/2018SW001992. [CrossRef] [Google Scholar]
- Mayer C, Belabbas B, Jakowski N, Meurer M. 2009. Ionosphere Threat Space Model Assessment for GBAS. In Proceedings of the 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation, 1091–1099. ION GNSS+. [Google Scholar]
- Mayer C, Jakowski N, Borries C, Pannowitsch T, Belabbas B. 2008. Extreme ionospheric conditions over Europe observed during the last solar cycle, In: Paper presented at 4th ESA Workshop on Satellite Navigation User Equipment Technologies, ESTEC, Noordwijk, Netherlands, 10–12 Dec. [Google Scholar]
- Mendillo M. 2006. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys 44(4): 1–47. https://doi.org/10.1029/2005RG000193. [CrossRef] [Google Scholar]
- Mishev AL, Usoskin IG. 2018. Assessment of the radiation environment at commercial jet-flight altitudes during GLE 72 on 10 September 2017 using neutron monitor data. Space Weather 16(12): 1921–1929. https://doi.org/10.1029/2018SW001946. [CrossRef] [Google Scholar]
- Mosna Z, Kouba D, Knizova PK, Buresova D, Chum J, Sindelarova T, Urbar J, Boska J, Saxonbergova–Jankovicova D. 2020. Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic. Adv Space Res 65(1): 115–128. https://doi.org/10.1016/j.asr.2019.09.024. [CrossRef] [Google Scholar]
- Obana Y, Maruyama N, Shinbori A, Hashimoto KK, Fedrizzi M, et al. 2019. Response of the ionosphere-plasmasphere coupling to the September 2017 storm: What erodes the plasmasphere so severely? Space Weather 17(6): 861–876. https://doi.org/10.1029/2019SW002168. [CrossRef] [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31: 163–172. 10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Paznukhov VV, Altadill D, Reinisch BW. 2009. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes. J Geophys Res 114(A12319): 1–13. https://doi.org/10.1029/2009JA014479. [CrossRef] [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24(18): 2283–2286. https://doi.org/10.1029/97GL02273. [CrossRef] [Google Scholar]
- Piggott W, Rawer K. 1972. U.R.S.I. Handbook of Ionogram Interpretation and Reduction. Rep. UAG-23. WDC-A for STP, 2nd edn. NOAA, Boulder, Colorado. [Google Scholar]
- Pokhotelov D, Mitchell CN, Spencer PSJ, Hairston MR, Heelis RA. 2008. Ionospheric storm time dynamics as seen by GPS tomography and in situ spacecraft observations. J Geophys Res 113(A00A16): 1–7. https://doi.org/10.1029/2008JA013109. [Google Scholar]
- Pradipta R, Doherty PH. 2015. Assessing the occurrence pattern of large ionospheric TEC gradients over the Brazilian airspace. Navigation: Journal of The Institute of Navigation 63(3): 335–343. https://doi.org/10.1002/navi.141. [Google Scholar]
- Prölss GW. 2006. Ionospheric F-region Storms: Unsolved Problems. In . Characterising the Ionosphere, Meeting Proceedings RTO-MP-IST-056, 10–1 – 10–20. [Google Scholar]
- Pulkkinen A, Amm O, Viljanen A, BEAR Working Group. 2003. Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. J Geophys Res Space Phys 108(A2): 1053. https://doi.org/10.1029/2001JA005085. [Google Scholar]
- Redmon RJ, Denig WF, Kilcommons LM, Knipp DJ. 2017. New DMSP database of precipitating auroral electrons and ions. J Geophys Res Space Phys 122(8): 9056–9067. https://doi.org/10.1002/2016JA023342. [CrossRef] [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53(3): 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin LA. 2011. Global Ionospheric Radio Observatory (GIRO). Earth Planets Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Richmond AD. 1995. Ionospheric electrodynamics using magnetic apex coordinates. J Geomag Geoelectr 47(2): 191–212. https://doi.org/10.5636/jgg.47.191. [CrossRef] [Google Scholar]
- Ritter P, Lühr H, Rauberg J. 2013. Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space 65(9): 1285–1294. https://doi.org/10.5047/eps.2013.09.006. [CrossRef] [Google Scholar]
- Sato H, Jakowski N, Berdermann J, Jiricka K, Heβelbarth A, Banyś D, Wilken V. 2019. Solar radio burst events on 6 September 2017 and its impact on GNSS Signal Frequencies. Space Weather 17(6): 816–826. https://doi.org/10.1029/2019SW002198. [CrossRef] [Google Scholar]
- Shimeis A, Borries C, Amory-Mazaudier C, Fleury R, Mahrous A, Hassan A, Nawar S. 2015. TEC variations along an East Euro-African chain during 5th April 2010 geomagnetic storm. Adv Space Res 55(9): 2239–2247. https://doi.org/10.1016/j.asr.2015.01.005. [CrossRef] [Google Scholar]
- Shiokawa K, Otsuka Y, Ogawa T. 2009. Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes. Earth Planets Space 61: 479–491. https://doi.org/10.1186/BF03353165. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res Space Phys 109(A6): 1–11. https://doi.org/10.1029/2003JA010302. [Google Scholar]
- Wilder FD, Crowley G, Anderson BJ, Richmond AD. 2012. Intense dayside Joule heating during the 5 April 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE. J Geophys Res Space Phys 117(A5): A05,207. https://doi.org/10.1029/2011JA017262. [Google Scholar]
- Xiong C, Lühr H, Wang H, Johnsen MG. 2014. Determining the boundaries of the auroral oval from CHAMP field-aligned current signatures – Part 1. Ann Geophys 32(6): 609–622. https://doi.org/10.5194/angeo-32-609-2014. [CrossRef] [Google Scholar]
- Yamauchi M, Sergienko T, Enell C-F, Schillings A, Slapak R, Johnsen MG, Tjulin A, Nilsson H. 2018. Ionospheric response observed by EISCAT during the 6–8 September 2017 space weather event: overview. Space Weather 16(9): 1437–1450. https://doi.org/10.1029/2018SW001937. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS & GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121(12): 12138–12156. https://doi.org/10.1002/2016JA023332. [CrossRef] [Google Scholar]
- Zhang S-R, Coster AJ, Erickson PJ, Goncharenko LP, Rideout W, Vierinen J. 2019. Traveling Ionospheric Disturbances and Ionospheric Perturbations Associated with Solar flares in September 2017. J Geophys Res Space Phys 124: 5894–5917. https://doi.org/10.1029/2019JA026585. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.