Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Scientific Advances from the European Commission H2020 projects on Space Weather
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2019042 | |
Published online | 20 January 2020 |
- Altadill D, Solé JG, Apostolov EM. 1998. First observation of quasi-2-day oscillations in ionospheric plasma frequency at fixed heights. Ann Geophys 16: 609–617. https://doi.org/10.1007/s00585-998-0609-5. [CrossRef] [Google Scholar]
- Beley VS, Galushko VG, Yampolski YM. 1995. Traveling ionospheric disturbances diagnostic using HF signal trajectory parameter variations. Radio Sci 30: 1739–1752. https://doi.org/10.1029/95RS01992. [CrossRef] [Google Scholar]
- Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, et al. 2017. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15: 418–429. https://doi.org/10.1002/2016SW001593. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophys 27(4): 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Davies K. 1990. Ionospheric radio; IEE electromagnetic waves series 31. Peter Peregrinus Ltd., London, UK. ISBN: 086341186X. [CrossRef] [Google Scholar]
- Ding F, Wan W, Ning B, Zhao B, Lin Q, et al. 2013. Observations of poleward-propagating large-scale traveling ionospheric disturbances in Southern China. Ann Geophys 31: 377–385. https://doi.org/10.5194/angeo-31-377-2013. [CrossRef] [Google Scholar]
- Evans JV, Holt JM, Wand RH. 1983. A differential Doppler study of traveling ionospheric disturbances from Millstone Hill. Radio Sci 18: 435–451. https://doi.org/10.1029/RS018i003p00435. [CrossRef] [Google Scholar]
- Fedorenko YP, Tyrnov OF, Fedorenko VN, Dorohov VL. 2013. Model of traveling ionospheric disturbances. J Space Weather Space Clim 3: A30. https://doi.org/10.1051/swsc/2013052. [CrossRef] [Google Scholar]
- Galkin I, Altadill D, Belehaki A, Buresova D, Haralambous H, et al. 2018. Warning and mitigation technologies for travelling ionospheric disturbances effects. TechTIDE D2.2. Report on TID algorithms. https://doi.org/10.5281/zenodo.2510350. [Google Scholar]
- Galushko VG, Beley VS, Koloskov AV, Yampolski YM, Paznukhov VV, et al. 2003. Frequency-and-angular HF sounding and ISR diagnostics of TIDs. Radio Sci 38: 1102. https://doi.org/10.1029/2002RS002861. [CrossRef] [Google Scholar]
- Hajkowicz LA. 1991. Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances. Planet Space Sci 39: 1189–1196. https://doi.org/10.1016/0032-0633(91)90170F. [CrossRef] [Google Scholar]
- Hernandez-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res 111: A07S11. https://doi.org/10.1029/2005JA011474. [Google Scholar]
- Hines CO. 1974. The upper atmosphere in motion, Geophysical Monograph, Vol. 18. American Geophysical Union, USA. ISBN: 9780875900186. [CrossRef] [Google Scholar]
- Hocke K. 1998. Phase estimation with the Lomb-Scargle periodogram method. Ann Geophys 16: 356–358. [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys Space Phys 20: 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Orús-Perez R. 2018. AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8: A14. https://doi.org/10.1051/swsc/2017044. [CrossRef] [Google Scholar]
- Karpachev AT, Beloff N, Carozzi TD, Denisenko PF, Karhunem TJT, Lester M. 2010. Detection of large scale TIDs associated with the dayside cusp using SuperDARN Data. J Atmos Sol-Terr Phys 72: 653–661. https://doi.org/10.1016/j.jastp.2010.02.018. [CrossRef] [Google Scholar]
- Nickisch LJ, Hausman MA, Fridman SV. 2006. Range rate – Doppler correlation for HF propagation in traveling ionospheric disturbance environments. Radio Sci 41: RS5S39. https://doi.org/10.1029/2005RS003358. [CrossRef] [Google Scholar]
- Oppenheim AV, Schafer RW, Buck JR. 2001. Discrete-time signal processing, 2nd edn. Prentice-Hall, Upper Saddle River, NJ. ISBN-13: 9780137549207. [Google Scholar]
- Paznukhov VV, Altadill D, Reinisch BW. 2009. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes. J Geophys Res 114: A12319. https://doi.org/10.1029/2009JA014479. [CrossRef] [Google Scholar]
- Paznukhov VV, Galushko VG, Reinisch BW. 2012. Digisonde observations of TIDs with frequency and angular sounding technique. Adv Space Res 49: 700–710. https://doi.org/10.1016/j.asr.2011.11.012. [CrossRef] [Google Scholar]
- Prölss GW, Očko M. 2000. Propagation of upper atmospheric storm effects towards lower latitudes. Adv Space Res 26: 131–135. https://doi.org/10.1016/S0273-1177(99)01039-X. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of travelling ionospheric disturbances. Radio Sci 53: 365–378. https://doi.org/10.1029/2017RS006263. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA, Khmyrov GM, Kozlov AV, Bibl K. 2009. New Digisonde for research and monitoring applications. Radio Sci 44: RS0A24. https://doi.org/10.1029/2008RS004115. [CrossRef] [Google Scholar]
- Rovira-Garcia A, Juan JM, Sanz J, González-Casado G, Bertran E. 2016. Fast precise point positioning: a system to provide corrections for single and multi-frequency navigation. Navigation 63: 231–247. https://doi.org/10.1002/navi.148. [CrossRef] [Google Scholar]
- Scargle JD. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263: 835–853. https://doi.org/10.1086/160554. [CrossRef] [Google Scholar]
- Smith SW. 2002. Digital signal processing: a practical guide for engineers and scientists, 1st edn, Newnes, Burlington MA. ISBN: 9780750674447. [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res 109: A06302. https://doi.org/10.1029/2003JA010302. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y, Yamamoto M. 2003. Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. J Geophys Res 108: 1127. https://doi.org/10.1029/2002JA009433. [CrossRef] [Google Scholar]
- Vadas S, Crowley G. 2010. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007. J Geophys Res 115: A07324. https://doi.org/10.1029/2009JA015053. [CrossRef] [Google Scholar]
- Van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, et al. 2013. LOFAR: the low-frequency array. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Verhulst T, Altadill D, Mielich J, Reinisch BW, Galkin I, et al. 2017. Vertical and oblique HF sounding with a network of synchronized ionosondes. Adv Space Res 60: 1644–1656. https://doi.org/10.1016/j.asr.2017.06.033. [CrossRef] [Google Scholar]
- Wan X, Ning B, Yuan H, Li J, Li L, Liang J. 1997. TID observation using a short baseline network of GPS receivers. Acta Geod Geoph Hung 32(3–4): 321–327. https://doi.org/10.1007/BF03325503. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.