Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 50 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/swsc/2021037 | |
Published online | 19 October 2021 |
- Alberti T, Lekscha Jaqueline, Consolini G, De Michelis P, Donner RV. 2020. Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties. J Space Weather Space Clim 10: 25. https://doi.org/10.1051/swsc/2020026. [CrossRef] [EDP Sciences] [Google Scholar]
- Bhatt A, Valentic T, Reimer A, Lamarche L, Reyes P, Cosgrove R. 2020. Reproducible Software Environment: a tool enabling computational reproducibility in geospace sciences and facilitating collaboration. J Space Weather Space Clim 10: 12. https://doi.org/10.1051/swsc/2020011. [CrossRef] [EDP Sciences] [Google Scholar]
- Camporeale E, Chu X, Agapitov OV, Bortnik J. 2019. On the generation of probabilistic forecasts from deterministic models. Space Weather 17(3): 455–475. https://doi.org/10.1029/2018SW002026. [CrossRef] [Google Scholar]
- Cesaroni C, Spogli L, Aragon-Angel A, Fiocca M, Dear V, De Franceschi G, Romano V. 2020. Neural network based model for global Total Electron Content forecasting. J Space Weather Space Clim 10: 11. https://doi.org/10.1051/swsc/2020013. [CrossRef] [EDP Sciences] [Google Scholar]
- Chakraborty S, Morley SK. 2020. Probabilistic prediction of geomagnetic storms and the Kp index. J Space Weather Space Clim 10: 36. https://doi.org/10.1051/swsc/2020037. [CrossRef] [EDP Sciences] [Google Scholar]
- Deshmukh V, Berger TE, Bradley E, Meiss JD. 2020. Leveraging the mathematics of shape for solar magnetic eruption prediction. J Space Weather Space Clim 10: 13. https://doi.org/10.1051/swsc/2020014. [CrossRef] [EDP Sciences] [Google Scholar]
- Georgoulis MK, Bloomfield DS, Piana M, Massone AM, Soldati M, et al. 2021. The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era. J Space Weather Space Clim 11: 39. https://doi.org/10.1051/swsc/2021023. [CrossRef] [EDP Sciences] [Google Scholar]
- Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang G-Z. 2019. XAI-Explainable artificial intelligence. Sci Robot 4(37): eaay7120. https://doi.org/10.1126/scirobotics.aay7120. [CrossRef] [Google Scholar]
- Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, et al. 2016. Jupyter Notebooks – a publishing format for reproducible computational workflows. In: Positioning and power in academic publishing: players, agents and agendas. Loizides F, Schmidt B (Eds.) IOS Press. pp. 87–90. [Google Scholar]
- Kuhn T. 1962. The structure of scientific revolutions. IEUS 2(2): 52–77 and 111–136. [Google Scholar]
- McGranaghan RM, Bhatt A, Matsuo T, Mannucci AJ, Semeter JL, Datta-Barua S. 2017. Ushering in a new Frontier in geospace through data science. J Geophys Res Space Phys 122(12): 12586–12590. https://doi.org/10.1002/2017JA024835. [Google Scholar]
- Merkel D. 2014. Docker: lightweight linux containers for consistent development and deployment. Linux J 2014(239): 2. https://doi.org/10.5555/2600239.2600241. [Google Scholar]
- National Academies of Sciences, Engineering and Medicine. 2018. Open Science by Design: Realizing a Vision for 21st Century Research. The National Academies Press, Washington, DC. ISBN 978-0-309-47624-9. https://doi.org/10.17226/25116, URL https://www.nap.edu/catalog/25116/open-science-by-design-realizing-a-vision-for-21st-century. [Google Scholar]
- Owens MJ, Lang M, Riley P, Lockwood M, Lawless AS. 2020. Quantifying the latitudinal representivity of in situ solar wind observations. J Space Weather Space Clim 10: 8. https://doi.org/10.1051/swsc/2020009. [CrossRef] [EDP Sciences] [Google Scholar]
- Park W, Lee J, Kim K-C, Lee J, Park K, et al. 2021. Operational Dst index prediction model based on combination of artificial neural network and empirical model. J Space Weather Space Clim 11: 38. https://doi.org/10.1051/swsc/2021021. [CrossRef] [EDP Sciences] [Google Scholar]
- Rogers NC, Wild JA, Eastoe EF, Gjerloev JW, Thomson AWP. 2020. A global climatological model of extreme geomagnetic field fluctuations. J Space Weather Space Clim 10: 5. https://doi.org/10.1051/swsc/2020008. [CrossRef] [EDP Sciences] [Google Scholar]
- Tang R, Zeng F, Chen Z, Wang J-S, Huang C-M, Wu Z. 2020. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq. Atmosphere 11(4): https://doi.org/10.3390/atmos11040316. [Google Scholar]
- Vadakke Veettil S, Cesaroni C, Aquino M, De Franceschi G, Berrili F, et al. 2019. The ionosphere prediction service prototype for GNSS users. J Space Weather Space Clim 9: A41. https://doi.org/10.1051/swsc/2019038. [CrossRef] [EDP Sciences] [Google Scholar]
- Wing S, Johnson JR. 2019. Applications of information theory in solar and space physics. Entropy 21(2): 40. https://doi.org/10.3390/e21020140. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.